Sony Alpha a7R III vs. Leica X-U (Typ 113)

Comparison

change cameras »
Alpha a7R III image
vs
X-U (Typ 113) image
Sony Alpha a7R III Leica X-U (Typ 113)
check price » check price »
Megapixels
42.40
16.20
Max. image resolution
7952 x 5304
4928 x 3264

Sensor

Sensor type
CMOS
CMOS
Sensor size
35.9 x 24 mm
23.6 x 15.7 mm
Sensor resolution
7976 x 5317
4929 x 3286
Diagonal
43.18 mm
28.35 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
2.33 : 1
(ratio)
Sony Alpha a7R III Leica X-U (Typ 113)
Surface area:
861.60 mm² vs 370.52 mm²
Difference: 491.08 mm² (133%)
Alpha a7R III sensor is approx. 2.33x bigger than X-U (Typ 113) sensor.
Pixel pitch
4.5 µm
4.79 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.29 µm (6%)
Pixel pitch of X-U (Typ 113) is approx. 6% higher than pixel pitch of Alpha a7R III.
Pixel area
20.25 µm²
22.94 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.69 µm² (13%)
A pixel on Leica X-U (Typ 113) sensor is approx. 13% bigger than a pixel on Sony Alpha a7R III.
Pixel density
4.94 MP/cm²
4.36 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 0.58 µm (13%)
Sony Alpha a7R III has approx. 13% higher pixel density than Leica X-U (Typ 113).
To learn about the accuracy of these numbers, click here.



Specs

Sony Alpha a7R III
Leica X-U (Typ 113)
Crop factor
1
1.53
Total megapixels
43.60
16.50
Effective megapixels
42.40
16.20
Optical zoom
 
1x
Digital zoom
Yes
No
ISO sensitivity
Auto, 100-32000 (expandable to 50-102400)
Auto, 100-12500
RAW
Manual focus
Normal focus range
20 cm
Macro focus range
Focal length (35mm equiv.)
35 mm
Aperture priority
Yes
Yes
Max. aperture
f1.7
Max. aperture (35mm equiv.)
n/a
f2.6
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV, 1 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/8000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Electronic
None
White balance presets
10
5
Screen size
3"
3"
Screen resolution
1,440,000 dots
920,000 dots
Video capture
Max. video resolution
3840x2160 (30p/25p/24p)
1920x1080 (30p)
Storage types
SD/SDHC/SDXC/MS PRO Duo
SD/SDHC/SDXC
USB
USB 3.0 (5 GBit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-FZ100 lithium-ion battery
BP-DC8 lithium-ion battery
Weight
657 g
635 g
Dimensions
126.9 x 95.6 x 73.7 mm
140 x 79 x 88 mm
Year
2017
2016




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Sony Alpha a7R III diagonal

w = 35.90 mm
h = 24.00 mm
Diagonal =  35.90² + 24.00²   = 43.18 mm

Leica X-U (Typ 113) diagonal

w = 23.60 mm
h = 15.70 mm
Diagonal =  23.60² + 15.70²   = 28.35 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Alpha a7R III sensor area

Width = 35.90 mm
Height = 24.00 mm

Surface area = 35.90 × 24.00 = 861.60 mm²

X-U (Typ 113) sensor area

Width = 23.60 mm
Height = 15.70 mm

Surface area = 23.60 × 15.70 = 370.52 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Alpha a7R III pixel pitch

Sensor width = 35.90 mm
Sensor resolution width = 7976 pixels
Pixel pitch =   35.90  × 1000  = 4.5 µm
7976

X-U (Typ 113) pixel pitch

Sensor width = 23.60 mm
Sensor resolution width = 4929 pixels
Pixel pitch =   23.60  × 1000  = 4.79 µm
4929


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Alpha a7R III pixel area

Pixel pitch = 4.5 µm

Pixel area = 4.5² = 20.25 µm²

X-U (Typ 113) pixel area

Pixel pitch = 4.79 µm

Pixel area = 4.79² = 22.94 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Alpha a7R III pixel density

Sensor resolution width = 7976 pixels
Sensor width = 3.59 cm

Pixel density = (7976 / 3.59)² / 1000000 = 4.94 MP/cm²

X-U (Typ 113) pixel density

Sensor resolution width = 4929 pixels
Sensor width = 2.36 cm

Pixel density = (4929 / 2.36)² / 1000000 = 4.36 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Alpha a7R III sensor resolution

Sensor width = 35.90 mm
Sensor height = 24.00 mm
Effective megapixels = 42.40
r = 35.90/24.00 = 1.5
X =  42.40 × 1000000  = 5317
1.5
Resolution horizontal: X × r = 5317 × 1.5 = 7976
Resolution vertical: X = 5317

Sensor resolution = 7976 x 5317

X-U (Typ 113) sensor resolution

Sensor width = 23.60 mm
Sensor height = 15.70 mm
Effective megapixels = 16.20
r = 23.60/15.70 = 1.5
X =  16.20 × 1000000  = 3286
1.5
Resolution horizontal: X × r = 3286 × 1.5 = 4929
Resolution vertical: X = 3286

Sensor resolution = 4929 x 3286


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Alpha a7R III crop factor

Sensor diagonal in mm = 43.18 mm
Crop factor =   43.27  = 1
43.18

X-U (Typ 113) crop factor

Sensor diagonal in mm = 28.35 mm
Crop factor =   43.27  = 1.53
28.35

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Alpha a7R III equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Sony Alpha a7R III, take the aperture of the lens you're using and multiply it with crop factor.

Since crop factor for Sony Alpha a7R III is 1, the equivalent aperture is aperture.

X-U (Typ 113) equivalent aperture

Crop factor = 1.53
Aperture = f1.7

35-mm equivalent aperture = (f1.7) × 1.53 = f2.6

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.