Sony Cyber-shot DSC-HX60 vs. Nikon Coolpix S9700

Comparison

change cameras »
Cyber-shot DSC-HX60 image
vs
Coolpix S9700 image
Sony Cyber-shot DSC-HX60 Nikon Coolpix S9700
check price » check price »
Megapixels
20.40
16.00
Max. image resolution
5184 x 3888
4608 x 3456

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
5208 x 3916
4612 x 3468
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Sony Cyber-shot DSC-HX60 Nikon Coolpix S9700
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
HX60 and S9700 sensors are the same size.
Pixel pitch
1.18 µm
1.34 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.16 µm (14%)
Pixel pitch of S9700 is approx. 14% higher than pixel pitch of HX60.
Pixel area
1.39 µm²
1.8 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.41 µm² (29%)
A pixel on Nikon S9700 sensor is approx. 29% bigger than a pixel on Sony HX60.
Pixel density
71.48 MP/cm²
56.06 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 15.42 µm (28%)
Sony HX60 has approx. 28% higher pixel density than Nikon S9700.
To learn about the accuracy of these numbers, click here.



Specs

Sony HX60
Nikon S9700
Crop factor
5.62
5.62
Total megapixels
16.79
Effective megapixels
20.40
16.00
Optical zoom
30x
30x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80-3200 (6400, 12800)
125 - 6400
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
5 cm
1 cm
Focal length (35mm equiv.)
24 - 720 mm
25 - 750 mm
Aperture priority
Yes
Yes
Max. aperture
f3.5 - f6.3
f3.7 - f6.4
Max. aperture (35mm equiv.)
f19.7 - f35.4
f20.8 - f36
Metering
Multi, Center-weighted, Spot
Matrix, center-weighted, spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
8 sec
Max. shutter speed
1/1600 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
White balance presets
7
5
Screen size
3"
3"
Screen resolution
921,600 dots
921,000 dots
Video capture
Max. video resolution
1920x1080 (50p)
1920x1080 (60i/50i/30p/25p)
Storage types
SD/SDHC/SDXC, Memory Stick Duo/Pro Duo/Pro-HG Duo
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Battery Pack NP-BX1
EN-EL12 rechargeable Li-ion battery
Weight
272 g
232 g
Dimensions
108.1 x 63.6 x 38.3 mm
109.6 x 63.5 x 34.5 mm
Year
2014
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Sony HX60 diagonal

The diagonal of HX60 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Nikon S9700 diagonal

The diagonal of S9700 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

HX60 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

S9700 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

HX60 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 5208 pixels
Pixel pitch =   6.16  × 1000  = 1.18 µm
5208

S9700 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.16  × 1000  = 1.34 µm
4612


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

HX60 pixel area

Pixel pitch = 1.18 µm

Pixel area = 1.18² = 1.39 µm²

S9700 pixel area

Pixel pitch = 1.34 µm

Pixel area = 1.34² = 1.8 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

HX60 pixel density

Sensor resolution width = 5208 pixels
Sensor width = 0.616 cm

Pixel density = (5208 / 0.616)² / 1000000 = 71.48 MP/cm²

S9700 pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm

Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

HX60 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 20.40
r = 6.16/4.62 = 1.33
X =  20.40 × 1000000  = 3916
1.33
Resolution horizontal: X × r = 3916 × 1.33 = 5208
Resolution vertical: X = 3916

Sensor resolution = 5208 x 3916

S9700 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


HX60 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

S9700 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

HX60 equivalent aperture

Crop factor = 5.62
Aperture = f3.5 - f6.3

35-mm equivalent aperture = (f3.5 - f6.3) × 5.62 = f19.7 - f35.4

S9700 equivalent aperture

Crop factor = 5.62
Aperture = f3.7 - f6.4

35-mm equivalent aperture = (f3.7 - f6.4) × 5.62 = f20.8 - f36

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.