Sony ZV-E1 vs. Leica D-Lux (Typ 109)
Comparison
change cameras » | |||||
|
vs |
|
|||
Sony ZV-E1 | Leica D-Lux (Typ 109) | ||||
check price » | check price » |
Megapixels
12.10
12.80
Max. image resolution
4240 x 2832
4112 x 3088
Sensor
Sensor type
CMOS
CMOS
Sensor size
35.6 x 23.8 mm
Four Thirds (17.3 x 13 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
3.77 | : | 1 |
(ratio) | ||
Sony ZV-E1 | Leica D-Lux (Typ 109) |
Surface area:
847.28 mm² | vs | 224.90 mm² |
Difference: 622.38 mm² (277%)
ZV-E1 sensor is approx. 3.77x bigger than D-Lux (Typ 109) sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 9 years between Sony ZV-E1 (2023) and Leica D-Lux (Typ 109) (2014).
Nine years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 52.33 µm² (298%)
A pixel on Sony ZV-E1 sensor is approx. 298% bigger than a pixel on Leica D-Lux (Typ 109).
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Sony ZV-E1
Leica D-Lux (Typ 109)
Total megapixels
16.80
Effective megapixels
12.10
12.80
Optical zoom
3.1x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80-102400 (extends to 40-409600)
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12500 (expands to 25000)
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
24 - 75 mm
Aperture priority
Yes
Yes
Max. aperture
f1.7 - f2.8
Metering
Multi, Center-weighted, Highlight-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
60 sec
Max. shutter speed
1/8000 sec
1/16000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
7
5
Screen size
3"
3"
Screen resolution
1,036,800 dots
921,000 dots
Video capture
Max. video resolution
3840x2160 (60p/50p/30p/25p/24p)
3840x2160 (30p/24p)
Storage types
SD/SDHC/SDXC (UHS-II)
SD/SDHC/SDXC (UHS-I)
USB
USB 3.2 (10 GBit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-FZ100 lithium-ion battery
Li-ion Battery Pack
Weight
483 g
405 g
Dimensions
121 x 71.9 x 54.3 mm
117.8 x 66.2 x 55 mm
Year
2023
2014
Choose cameras to compare
Popular comparisons:
- Sony ZV-E1 vs. Sony FX30
- Sony ZV-E1 vs. Sony Alpha a6400
- Sony ZV-E1 vs. Canon EOS R8
- Sony ZV-E1 vs. Sony ZV-E10
- Sony ZV-E1 vs. Canon PowerShot G7 X Mark II
- Sony ZV-E1 vs. Sony a7S III
- Sony ZV-E1 vs. Sony ZV-1F
- Sony ZV-E1 vs. Leica D-Lux (Typ 109)
- Sony ZV-E1 vs. Sony A7 IV
- Sony ZV-E1 vs. Canon EOS R50
- Sony ZV-E1 vs. Sony Cyber-shot DSC-RX100 IV
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Sony ZV-E1 diagonal
w = 35.60 mm
h = 23.80 mm
h = 23.80 mm
Diagonal = √ | 35.60² + 23.80² | = 42.82 mm |
Leica D-Lux (Typ 109) diagonal
w = 17.30 mm
h = 13.00 mm
h = 13.00 mm
Diagonal = √ | 17.30² + 13.00² | = 21.64 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
ZV-E1 sensor area
Width = 35.60 mm
Height = 23.80 mm
Surface area = 35.60 × 23.80 = 847.28 mm²
Height = 23.80 mm
Surface area = 35.60 × 23.80 = 847.28 mm²
D-Lux (Typ 109) sensor area
Width = 17.30 mm
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
ZV-E1 pixel pitch
Sensor width = 35.60 mm
Sensor resolution width = 4260 pixels
Sensor resolution width = 4260 pixels
Pixel pitch = | 35.60 | × 1000 | = 8.36 µm |
4260 |
D-Lux (Typ 109) pixel pitch
Sensor width = 17.30 mm
Sensor resolution width = 4126 pixels
Sensor resolution width = 4126 pixels
Pixel pitch = | 17.30 | × 1000 | = 4.19 µm |
4126 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
ZV-E1 pixel area
Pixel pitch = 8.36 µm
Pixel area = 8.36² = 69.89 µm²
Pixel area = 8.36² = 69.89 µm²
D-Lux (Typ 109) pixel area
Pixel pitch = 4.19 µm
Pixel area = 4.19² = 17.56 µm²
Pixel area = 4.19² = 17.56 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
ZV-E1 pixel density
Sensor resolution width = 4260 pixels
Sensor width = 3.56 cm
Pixel density = (4260 / 3.56)² / 1000000 = 1.43 MP/cm²
Sensor width = 3.56 cm
Pixel density = (4260 / 3.56)² / 1000000 = 1.43 MP/cm²
D-Lux (Typ 109) pixel density
Sensor resolution width = 4126 pixels
Sensor width = 1.73 cm
Pixel density = (4126 / 1.73)² / 1000000 = 5.69 MP/cm²
Sensor width = 1.73 cm
Pixel density = (4126 / 1.73)² / 1000000 = 5.69 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
ZV-E1 sensor resolution
Sensor width = 35.60 mm
Sensor height = 23.80 mm
Effective megapixels = 12.10
Resolution horizontal: X × r = 2840 × 1.5 = 4260
Resolution vertical: X = 2840
Sensor resolution = 4260 x 2840
Sensor height = 23.80 mm
Effective megapixels = 12.10
r = 35.60/23.80 = 1.5 |
|
Resolution vertical: X = 2840
Sensor resolution = 4260 x 2840
D-Lux (Typ 109) sensor resolution
Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 12.80
Resolution horizontal: X × r = 3102 × 1.33 = 4126
Resolution vertical: X = 3102
Sensor resolution = 4126 x 3102
Sensor height = 13.00 mm
Effective megapixels = 12.80
r = 17.30/13.00 = 1.33 |
|
Resolution vertical: X = 3102
Sensor resolution = 4126 x 3102
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
ZV-E1 crop factor
Sensor diagonal in mm = 42.82 mm
Crop factor = | 43.27 | = 1.01 |
42.82 |
D-Lux (Typ 109) crop factor
Sensor diagonal in mm = 21.64 mm
Crop factor = | 43.27 | = 2 |
21.64 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
ZV-E1 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Sony ZV-E1, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Sony ZV-E1 is 1.01
Crop factor for Sony ZV-E1 is 1.01
D-Lux (Typ 109) equivalent aperture
Crop factor = 2
Aperture = f1.7 - f2.8
35-mm equivalent aperture = (f1.7 - f2.8) × 2 = f3.4 - f5.6
Aperture = f1.7 - f2.8
35-mm equivalent aperture = (f1.7 - f2.8) × 2 = f3.4 - f5.6
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.