Nikon Coolpix L320 vs. Fujifilm FinePix S4300

Comparison

change cameras »
Coolpix L320 image
vs
FinePix S4300 image
Nikon Coolpix L320 Fujifilm FinePix S4300
check price » check price »
Megapixels
16.10
14.00
Max. image resolution
4608 x 3456
4288 x 3216

Sensor

Sensor type
CCD
n/a
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4627 x 3479
4315 x 3244
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Nikon Coolpix L320 Fujifilm FinePix S4300
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
L320 and S4300 sensors are the same size.
Pixel pitch
1.33 µm
1.43 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.1 µm (8%)
Pixel pitch of S4300 is approx. 8% higher than pixel pitch of L320.
Pixel area
1.77 µm²
2.04 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.27 µm² (15%)
A pixel on Fujifilm S4300 sensor is approx. 15% bigger than a pixel on Nikon L320.
Pixel density
56.42 MP/cm²
49.07 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 7.35 µm (15%)
Nikon L320 has approx. 15% higher pixel density than Fujifilm S4300.
To learn about the accuracy of these numbers, click here.

Specs

Nikon L320
Fujifilm S4300
Crop factor
5.62
5.62
Total megapixels
16.44
Effective megapixels
16.10
Optical zoom
26x
Digital zoom
Yes
ISO sensitivity
Auto, 80 - 1600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
1 cm
Focal length (35mm equiv.)
22.5 - 585 mm
Aperture priority
No
Max. aperture
f3.1 - f5.9
Max. aperture (35mm equiv.)
f17.4 - f33.2
n/a
Metering
Matrix, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
Shutter priority
No
Min. shutter speed
4 sec
Max. shutter speed
1/1500 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
Screen size
3"
Screen resolution
230,000 dots
Video capture
Max. video resolution
1280x720 (30p)
Storage types
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
4 x AA batteries
Weight
430 g
Dimensions
111.1 x 76.3 x 83.1 mm
Year
2013
2012



Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nikon L320 diagonal

The diagonal of L320 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Fujifilm S4300 diagonal

The diagonal of S4300 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

L320 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

S4300 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

L320 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4627 pixels
Pixel pitch =   6.16  × 1000  = 1.33 µm
4627

S4300 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4315 pixels
Pixel pitch =   6.16  × 1000  = 1.43 µm
4315


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

L320 pixel area

Pixel pitch = 1.33 µm

Pixel area = 1.33² = 1.77 µm²

S4300 pixel area

Pixel pitch = 1.43 µm

Pixel area = 1.43² = 2.04 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

L320 pixel density

Sensor resolution width = 4627 pixels
Sensor width = 0.616 cm

Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²

S4300 pixel density

Sensor resolution width = 4315 pixels
Sensor width = 0.616 cm

Pixel density = (4315 / 0.616)² / 1000000 = 49.07 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

L320 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.10
r = 6.16/4.62 = 1.33
X =  16.10 × 1000000  = 3479
1.33
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479

Sensor resolution = 4627 x 3479

S4300 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.00
r = 6.16/4.62 = 1.33
X =  14.00 × 1000000  = 3244
1.33
Resolution horizontal: X × r = 3244 × 1.33 = 4315
Resolution vertical: X = 3244

Sensor resolution = 4315 x 3244


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


L320 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

S4300 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

L320 equivalent aperture

Crop factor = 5.62
Aperture = f3.1 - f5.9

35-mm equivalent aperture = (f3.1 - f5.9) × 5.62 = f17.4 - f33.2

S4300 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Fujifilm S4300, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Fujifilm S4300 is 5.62

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.