Acer CE-6430 vs. Acer CI-6330

Comparison

change cameras »
CE-6430 image
vs
CI-6330 image
Acer CE-6430 Acer CI-6330
check price » check price »
Megapixels
6.36
6.16
Max. image resolution
2864 x 2152
2848 x 2136

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
2909 x 2187
2862 x 2152
Diagonal
7.19 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.53
(ratio)
Acer CE-6430 Acer CI-6330
Surface area:
24.84 mm² vs 37.90 mm²
Difference: 13.06 mm² (53%)
CI-6330 sensor is approx. 1.53x bigger than CE-6430 sensor.
Pixel pitch
1.98 µm
2.48 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.5 µm (25%)
Pixel pitch of CI-6330 is approx. 25% higher than pixel pitch of CE-6430.
Pixel area
3.92 µm²
6.15 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.23 µm² (57%)
A pixel on Acer CI-6330 sensor is approx. 57% bigger than a pixel on Acer CE-6430.
Pixel density
25.59 MP/cm²
16.2 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 9.39 µm (58%)
Acer CE-6430 has approx. 58% higher pixel density than Acer CI-6330.
To learn about the accuracy of these numbers, click here.



Specs

Acer CE-6430
Acer CI-6330
Crop factor
6.02
4.87
Total megapixels
Effective megapixels
Optical zoom
Yes
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 64, 100, 200
Auto, 50, 100, 200
RAW
Manual focus
Normal focus range
40 cm
50 cm
Macro focus range
5 cm
6 cm
Focal length (35mm equiv.)
34 - 102 mm
36 - 108 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.8
f2.8 - f4.8
Max. aperture (35mm equiv.)
f16.9 - f28.9
f13.6 - f23.4
Metering
Centre weighted
Centre weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±1.5 EV (in 1/2 EV steps)
Shutter priority
No
No
Min. shutter speed
1/2 sec
1 sec
Max. shutter speed
1/1000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
Optical
White balance presets
5
5
Screen size
2.36"
2"
Screen resolution
110,000 dots
130,338 dots
Video capture
Max. video resolution
Storage types
Secure Digital
Secure Digital
USB
USB 1.1
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2x AA
2x AA
Weight
130 g
160 g
Dimensions
88.5 x 60 x 28 mm
91 x 61 x 31.5 mm
Year
2006
2005




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Acer CE-6430 diagonal

The diagonal of CE-6430 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Acer CI-6330 diagonal

The diagonal of CI-6330 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

CE-6430 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

CI-6330 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

CE-6430 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2909 pixels
Pixel pitch =   5.75  × 1000  = 1.98 µm
2909

CI-6330 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2862 pixels
Pixel pitch =   7.11  × 1000  = 2.48 µm
2862


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

CE-6430 pixel area

Pixel pitch = 1.98 µm

Pixel area = 1.98² = 3.92 µm²

CI-6330 pixel area

Pixel pitch = 2.48 µm

Pixel area = 2.48² = 6.15 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

CE-6430 pixel density

Sensor resolution width = 2909 pixels
Sensor width = 0.575 cm

Pixel density = (2909 / 0.575)² / 1000000 = 25.59 MP/cm²

CI-6330 pixel density

Sensor resolution width = 2862 pixels
Sensor width = 0.711 cm

Pixel density = (2862 / 0.711)² / 1000000 = 16.2 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

CE-6430 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.36
r = 5.75/4.32 = 1.33
X =  6.36 × 1000000  = 2187
1.33
Resolution horizontal: X × r = 2187 × 1.33 = 2909
Resolution vertical: X = 2187

Sensor resolution = 2909 x 2187

CI-6330 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 6.16
r = 7.11/5.33 = 1.33
X =  6.16 × 1000000  = 2152
1.33
Resolution horizontal: X × r = 2152 × 1.33 = 2862
Resolution vertical: X = 2152

Sensor resolution = 2862 x 2152


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


CE-6430 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

CI-6330 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

CE-6430 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 6.02 = f16.9 - f28.9

CI-6330 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 4.87 = f13.6 - f23.4

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.