Acer CI-6330 vs. AgfaPhoto Compact 103

Comparison

change cameras »
CI-6330 image
vs
Compact 103 image
Acer CI-6330 AgfaPhoto Compact 103
check price » check price »
Megapixels
6.16
12.00
Max. image resolution
2848 x 2136
4000 x 3000

Sensor

Sensor type
CCD
CCD
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor resolution
2862 x 2152
3995 x 3004
Diagonal
8.89 mm
7.60 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.37 : 1
(ratio)
Acer CI-6330 AgfaPhoto Compact 103
Surface area:
37.90 mm² vs 27.72 mm²
Difference: 10.18 mm² (37%)
CI-6330 sensor is approx. 1.37x bigger than Compact 103 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 6 years between Acer CI-6330 (2005) and AgfaPhoto Compact 103 (2011). Six years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
2.48 µm
1.52 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.96 µm (63%)
Pixel pitch of CI-6330 is approx. 63% higher than pixel pitch of Compact 103.
Pixel area
6.15 µm²
2.31 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.84 µm² (166%)
A pixel on Acer CI-6330 sensor is approx. 166% bigger than a pixel on AgfaPhoto Compact 103.
Pixel density
16.2 MP/cm²
43.17 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 26.97 µm (166%)
AgfaPhoto Compact 103 has approx. 166% higher pixel density than Acer CI-6330.
To learn about the accuracy of these numbers, click here.



Specs

Acer CI-6330
AgfaPhoto Compact 103
Crop factor
4.87
5.69
Total megapixels
Effective megapixels
Optical zoom
Yes
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200
Auto, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
50 cm
12 cm
Macro focus range
6 cm
12 cm
Focal length (35mm equiv.)
36 - 108 mm
28 - 112 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.8
f2.8 - f6.3
Max. aperture (35mm equiv.)
f13.6 - f23.4
f15.9 - f35.8
Metering
Centre weighted, Spot
Centre weighted, Multi-segment, Spot
Exposure compensation
±1.5 EV (in 1/2 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
1 sec
15 sec
Max. shutter speed
1/1000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical
None
White balance presets
5
6
Screen size
2"
2.7"
Screen resolution
130,338 dots
230,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2x AA
2x AA
Weight
160 g
120 g
Dimensions
91 x 61 x 31.5 mm
94.7 x 61.1 x 24.1 mm
Year
2005
2011




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Acer CI-6330 diagonal

The diagonal of CI-6330 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm

AgfaPhoto Compact 103 diagonal

The diagonal of Compact 103 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

CI-6330 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²

Compact 103 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

CI-6330 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2862 pixels
Pixel pitch =   7.11  × 1000  = 2.48 µm
2862

Compact 103 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 3995 pixels
Pixel pitch =   6.08  × 1000  = 1.52 µm
3995


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

CI-6330 pixel area

Pixel pitch = 2.48 µm

Pixel area = 2.48² = 6.15 µm²

Compact 103 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

CI-6330 pixel density

Sensor resolution width = 2862 pixels
Sensor width = 0.711 cm

Pixel density = (2862 / 0.711)² / 1000000 = 16.2 MP/cm²

Compact 103 pixel density

Sensor resolution width = 3995 pixels
Sensor width = 0.608 cm

Pixel density = (3995 / 0.608)² / 1000000 = 43.17 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

CI-6330 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 6.16
r = 7.11/5.33 = 1.33
X =  6.16 × 1000000  = 2152
1.33
Resolution horizontal: X × r = 2152 × 1.33 = 2862
Resolution vertical: X = 2152

Sensor resolution = 2862 x 2152

Compact 103 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.00
r = 6.08/4.56 = 1.33
X =  12.00 × 1000000  = 3004
1.33
Resolution horizontal: X × r = 3004 × 1.33 = 3995
Resolution vertical: X = 3004

Sensor resolution = 3995 x 3004


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


CI-6330 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

Compact 103 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

CI-6330 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 4.87 = f13.6 - f23.4

Compact 103 equivalent aperture

Crop factor = 5.69
Aperture = f2.8 - f6.3

35-mm equivalent aperture = (f2.8 - f6.3) × 5.69 = f15.9 - f35.8

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.