Acer CU-6530 vs. Canon EOS 7D

Comparison

change cameras »
CU-6530 image
vs
EOS 7D image
Acer CU-6530 Canon EOS 7D
check price » check price »
Megapixels
6.16
18.00
Max. image resolution
2816 x 2112
5184 x 3456

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
22.3 x 14.9 mm
Sensor resolution
2862 x 2152
5196 x 3464
Diagonal
7.19 mm
26.82 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 13.38
(ratio)
Acer CU-6530 Canon EOS 7D
Surface area:
24.84 mm² vs 332.27 mm²
Difference: 307.43 mm² (1238%)
7D sensor is approx. 13.38x bigger than CU-6530 sensor.
Note: You are comparing cameras of different generations. There is a 3 year gap between Acer CU-6530 (2006) and Canon 7D (2009). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.01 µm
4.29 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.28 µm (113%)
Pixel pitch of 7D is approx. 113% higher than pixel pitch of CU-6530.
Pixel area
4.04 µm²
18.4 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 14.36 µm² (355%)
A pixel on Canon 7D sensor is approx. 355% bigger than a pixel on Acer CU-6530.
Pixel density
24.77 MP/cm²
5.43 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 19.34 µm (356%)
Acer CU-6530 has approx. 356% higher pixel density than Canon 7D.
To learn about the accuracy of these numbers, click here.



Specs

Acer CU-6530
Canon 7D
Crop factor
6.02
1.61
Total megapixels
6.36
19.00
Effective megapixels
18.00
Optical zoom
Yes
Digital zoom
Yes
No
ISO sensitivity
Auto, 50, 100, 200
Auto, 100, 200, 400, 800, 1600, 3200, 6400, (12800 with boost)
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
6 cm
Focal length (35mm equiv.)
32 - 96 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.8
Max. aperture (35mm equiv.)
f16.9 - f28.9
n/a
Metering
Centre weighted, Spot
Centre weighted, Evaluative, Spot, Spot-AF
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/2 sec
30 sec
Max. shutter speed
1/1000 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
None
Optical (pentaprism)
White balance presets
6
6
Screen size
2.5"
3"
Screen resolution
230,400 dots
920,000 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
Storage types
Secure Digital
CompactFlash type I, CompactFlash type II, Microdrive
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
Lithium-Ion LP-E6 rechargeable battery
Weight
110 g
860 g
Dimensions
90 x 54 x 18 mm
148.2 x 110 x 73.5 mm
Year
2006
2009




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Acer CU-6530 diagonal

The diagonal of CU-6530 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Canon 7D diagonal

w = 22.30 mm
h = 14.90 mm
Diagonal =  22.30² + 14.90²   = 26.82 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

CU-6530 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

7D sensor area

Width = 22.30 mm
Height = 14.90 mm

Surface area = 22.30 × 14.90 = 332.27 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

CU-6530 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2862 pixels
Pixel pitch =   5.75  × 1000  = 2.01 µm
2862

7D pixel pitch

Sensor width = 22.30 mm
Sensor resolution width = 5196 pixels
Pixel pitch =   22.30  × 1000  = 4.29 µm
5196


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

CU-6530 pixel area

Pixel pitch = 2.01 µm

Pixel area = 2.01² = 4.04 µm²

7D pixel area

Pixel pitch = 4.29 µm

Pixel area = 4.29² = 18.4 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

CU-6530 pixel density

Sensor resolution width = 2862 pixels
Sensor width = 0.575 cm

Pixel density = (2862 / 0.575)² / 1000000 = 24.77 MP/cm²

7D pixel density

Sensor resolution width = 5196 pixels
Sensor width = 2.23 cm

Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

CU-6530 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.16
r = 5.75/4.32 = 1.33
X =  6.16 × 1000000  = 2152
1.33
Resolution horizontal: X × r = 2152 × 1.33 = 2862
Resolution vertical: X = 2152

Sensor resolution = 2862 x 2152

7D sensor resolution

Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 18.00
r = 22.30/14.90 = 1.5
X =  18.00 × 1000000  = 3464
1.5
Resolution horizontal: X × r = 3464 × 1.5 = 5196
Resolution vertical: X = 3464

Sensor resolution = 5196 x 3464


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


CU-6530 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

7D crop factor

Sensor diagonal in mm = 26.82 mm
Crop factor =   43.27  = 1.61
26.82

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

CU-6530 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 6.02 = f16.9 - f28.9

7D equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Canon 7D, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Canon 7D is 1.61

More comparisons of Acer CU-6530:

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.