AgfaPhoto Compact 103 vs. Konica-Minolta DiMAGE X1

Comparison

change cameras »
Compact 103 image
vs
DiMAGE X1 image
AgfaPhoto Compact 103 Konica-Minolta DiMAGE X1
check price » check price »
Megapixels
12.00
8.30
Max. image resolution
4000 x 3000
3264 x 2448

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
3995 x 3004
3322 x 2498
Diagonal
7.60 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.37
(ratio)
AgfaPhoto Compact 103 Konica-Minolta DiMAGE X1
Surface area:
27.72 mm² vs 37.90 mm²
Difference: 10.18 mm² (37%)
DiMAGE X1 sensor is approx. 1.37x bigger than Compact 103 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 6 years between AgfaPhoto Compact 103 (2011) and Konica-Minolta DiMAGE X1 (2005). Six years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.52 µm
2.14 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.62 µm (41%)
Pixel pitch of DiMAGE X1 is approx. 41% higher than pixel pitch of Compact 103.
Pixel area
2.31 µm²
4.58 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.27 µm² (98%)
A pixel on Konica-Minolta DiMAGE X1 sensor is approx. 98% bigger than a pixel on AgfaPhoto Compact 103.
Pixel density
43.17 MP/cm²
21.83 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 21.34 µm (98%)
AgfaPhoto Compact 103 has approx. 98% higher pixel density than Konica-Minolta DiMAGE X1.
To learn about the accuracy of these numbers, click here.



Specs

AgfaPhoto Compact 103
Konica-Minolta DiMAGE X1
Crop factor
5.69
4.87
Total megapixels
Effective megapixels
Optical zoom
Yes
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200
Auto, 50, 100, 200
RAW
Manual focus
Normal focus range
12 cm
10 cm
Macro focus range
12 cm
5 cm
Focal length (35mm equiv.)
28 - 112 mm
37 - 111 mm
Aperture priority
No
No
Max. aperture
f2.8 - f6.3
f3.5 - f3.8
Max. aperture (35mm equiv.)
f15.9 - f35.8
f17 - f18.5
Metering
Centre weighted, Multi-segment, Spot
Multi-segment, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
15 sec
1 sec
Max. shutter speed
1/2000 sec
1/1250 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
5
Screen size
2.7"
2.5"
Screen resolution
230,000 dots
118,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
MultiMedia, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
2x AA
Lithium-Ion
Weight
120 g
135 g
Dimensions
94.7 x 61.1 x 24.1 mm
95 x 68 x 19.5 mm
Year
2011
2005




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

AgfaPhoto Compact 103 diagonal

The diagonal of Compact 103 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm

Konica-Minolta DiMAGE X1 diagonal

The diagonal of DiMAGE X1 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Compact 103 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²

DiMAGE X1 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Compact 103 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 3995 pixels
Pixel pitch =   6.08  × 1000  = 1.52 µm
3995

DiMAGE X1 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 3322 pixels
Pixel pitch =   7.11  × 1000  = 2.14 µm
3322


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Compact 103 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²

DiMAGE X1 pixel area

Pixel pitch = 2.14 µm

Pixel area = 2.14² = 4.58 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Compact 103 pixel density

Sensor resolution width = 3995 pixels
Sensor width = 0.608 cm

Pixel density = (3995 / 0.608)² / 1000000 = 43.17 MP/cm²

DiMAGE X1 pixel density

Sensor resolution width = 3322 pixels
Sensor width = 0.711 cm

Pixel density = (3322 / 0.711)² / 1000000 = 21.83 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Compact 103 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.00
r = 6.08/4.56 = 1.33
X =  12.00 × 1000000  = 3004
1.33
Resolution horizontal: X × r = 3004 × 1.33 = 3995
Resolution vertical: X = 3004

Sensor resolution = 3995 x 3004

DiMAGE X1 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 8.30
r = 7.11/5.33 = 1.33
X =  8.30 × 1000000  = 2498
1.33
Resolution horizontal: X × r = 2498 × 1.33 = 3322
Resolution vertical: X = 2498

Sensor resolution = 3322 x 2498


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Compact 103 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

DiMAGE X1 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Compact 103 equivalent aperture

Crop factor = 5.69
Aperture = f2.8 - f6.3

35-mm equivalent aperture = (f2.8 - f6.3) × 5.69 = f15.9 - f35.8

DiMAGE X1 equivalent aperture

Crop factor = 4.87
Aperture = f3.5 - f3.8

35-mm equivalent aperture = (f3.5 - f3.8) × 4.87 = f17 - f18.5

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.