Canon Digital IXUS i vs. Olympus Stylus 810
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon Digital IXUS i | Olympus Stylus 810 | ||||
check price » | check price » |
Megapixels
4.00
8.00
Max. image resolution
2272 x 1704
3264 x 2488
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.53 |
(ratio) | ||
Canon Digital IXUS i | Olympus Stylus 810 |
Surface area:
24.84 mm² | vs | 37.90 mm² |
Difference: 13.06 mm² (53%)
810 sensor is approx. 1.53x bigger than IXUS i sensor.
Note: You are comparing cameras of different generations.
There is a 3 year gap between Canon IXUS i (2003) and Olympus 810 (2006).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.45 µm² (31%)
A pixel on Canon IXUS i sensor is approx. 31% bigger than a pixel on Olympus 810.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon IXUS i
Olympus 810
Total megapixels
4.20
8.30
Effective megapixels
4.00
8.00
Optical zoom
1x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 64, 100, 200, 400, (800, 1600, 3200 with limitations)
RAW
Manual focus
Normal focus range
10 cm
60 cm
Macro focus range
3 cm
10 cm
Focal length (35mm equiv.)
39 mm
35 - 105 mm
Aperture priority
No
No
Max. aperture
f2.8
f2.8 - f4.7
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
15 sec
4 sec
Max. shutter speed
1/1500 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
5
Screen size
1.5"
2.5"
Screen resolution
78,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SD/MMC card
xD Picture Card, Internal
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-3L battery
Lithium-Ion rechargeable
Weight
140 g
165 g
Dimensions
90 x 47 x 19 mm
97 x 56 x 23 mm
Year
2003
2006
Choose cameras to compare
Popular comparisons:
- Canon Digital IXUS i vs. Canon DIGITAL IXUS i5
- Canon Digital IXUS i vs. Olympus Stylus 810
- Canon Digital IXUS i vs. Nokia Lumia 1020
- Canon Digital IXUS i vs. Samsung ES95
- Canon Digital IXUS i vs. Canon Digital IXUS 850 IS
- Canon Digital IXUS i vs. Nikon Coolpix L31
- Canon Digital IXUS i vs. Canon IXUS 285 HS
- Canon Digital IXUS i vs. Canon IXY DIGITAL 200
- Canon Digital IXUS i vs. Nikon D700
- Canon Digital IXUS i vs. Canon Digital IXUS 40
- Canon Digital IXUS i vs. Canon Digital IXUS i7
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon IXUS i diagonal
The diagonal of IXUS i sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Olympus 810 diagonal
The diagonal of 810 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of
that value - 8.89 mm. If you want to know why, see
sensor sizes.
w = 7.11 mm
h = 5.33 mm
w = 7.11 mm
h = 5.33 mm
Diagonal = √ | 7.11² + 5.33² | = 8.89 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
IXUS i sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
810 sensor area
Width = 7.11 mm
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
IXUS i pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2306 pixels
Sensor resolution width = 2306 pixels
Pixel pitch = | 5.75 | × 1000 | = 2.49 µm |
2306 |
810 pixel pitch
Sensor width = 7.11 mm
Sensor resolution width = 3262 pixels
Sensor resolution width = 3262 pixels
Pixel pitch = | 7.11 | × 1000 | = 2.18 µm |
3262 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
IXUS i pixel area
Pixel pitch = 2.49 µm
Pixel area = 2.49² = 6.2 µm²
Pixel area = 2.49² = 6.2 µm²
810 pixel area
Pixel pitch = 2.18 µm
Pixel area = 2.18² = 4.75 µm²
Pixel area = 2.18² = 4.75 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
IXUS i pixel density
Sensor resolution width = 2306 pixels
Sensor width = 0.575 cm
Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²
810 pixel density
Sensor resolution width = 3262 pixels
Sensor width = 0.711 cm
Pixel density = (3262 / 0.711)² / 1000000 = 21.05 MP/cm²
Sensor width = 0.711 cm
Pixel density = (3262 / 0.711)² / 1000000 = 21.05 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
IXUS i sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 4.00
Resolution horizontal: X × r = 1734 × 1.33 = 2306
Resolution vertical: X = 1734
Sensor resolution = 2306 x 1734
Sensor height = 4.32 mm
Effective megapixels = 4.00
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 1734
Sensor resolution = 2306 x 1734
810 sensor resolution
Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 8.00
Resolution horizontal: X × r = 2453 × 1.33 = 3262
Resolution vertical: X = 2453
Sensor resolution = 3262 x 2453
Sensor height = 5.33 mm
Effective megapixels = 8.00
r = 7.11/5.33 = 1.33 |
|
Resolution vertical: X = 2453
Sensor resolution = 3262 x 2453
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
IXUS i crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
810 crop factor
Sensor diagonal in mm = 8.89 mm
Crop factor = | 43.27 | = 4.87 |
8.89 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
IXUS i equivalent aperture
Crop factor = 6.02
Aperture = f2.8
35-mm equivalent aperture = (f2.8) × 6.02 = f16.9
Aperture = f2.8
35-mm equivalent aperture = (f2.8) × 6.02 = f16.9
810 equivalent aperture
Crop factor = 4.87
Aperture = f2.8 - f4.7
35-mm equivalent aperture = (f2.8 - f4.7) × 4.87 = f13.6 - f22.9
Aperture = f2.8 - f4.7
35-mm equivalent aperture = (f2.8 - f4.7) × 4.87 = f13.6 - f22.9
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.