Canon IXY DIGITAL 820 IS vs. Fujifilm FinePix E550 Zoom

Comparison

change cameras »
IXY DIGITAL 820 IS image
vs
FinePix E550 Zoom image
Canon IXY DIGITAL 820 IS Fujifilm FinePix E550 Zoom
check price » check price »
Megapixels
10.00
6.00
Max. image resolution
3648 x 2736
4048 x 3040

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/1.7" (~ 7.53 x 5.64 mm)
Sensor resolution
3647 x 2742
2835 x 2116
Diagonal
7.70 mm
9.41 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.49
(ratio)
Canon IXY DIGITAL 820 IS Fujifilm FinePix E550 Zoom
Surface area:
28.46 mm² vs 42.47 mm²
Difference: 14.01 mm² (49%)
E550 Zoom sensor is approx. 1.49x bigger than IXY DIGITAL 820 IS sensor.
Note: You are comparing cameras of different generations. There is a 4 year gap between Canon IXY DIGITAL 820 IS (2008) and Fujifilm E550 Zoom (2004). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.69 µm
2.66 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.97 µm (57%)
Pixel pitch of E550 Zoom is approx. 57% higher than pixel pitch of IXY DIGITAL 820 IS.
Pixel area
2.86 µm²
7.08 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 4.22 µm² (148%)
A pixel on Fujifilm E550 Zoom sensor is approx. 148% bigger than a pixel on Canon IXY DIGITAL 820 IS.
Pixel density
35.05 MP/cm²
14.17 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 20.88 µm (147%)
Canon IXY DIGITAL 820 IS has approx. 147% higher pixel density than Fujifilm E550 Zoom.
To learn about the accuracy of these numbers, click here.



Specs

Canon IXY DIGITAL 820 IS
Fujifilm E550 Zoom
Crop factor
5.62
4.6
Total megapixels
10.30
6.30
Effective megapixels
10.00
6.00
Optical zoom
5x
4x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80 ,100, 200, 400, 800, 1600
Auto, 80, 100, 200, 400, 800
RAW
Manual focus
Normal focus range
50 cm
60 cm
Macro focus range
2 cm
7 cm
Focal length (35mm equiv.)
37 - 185 mm
33 - 130 mm
Aperture priority
No
Yes
Max. aperture
f3.2 - f5.7
f2.8 - f5.6
Max. aperture (35mm equiv.)
f18 - f32
f12.9 - f25.8
Metering
Multi, Center-weighted, Spot
Multi, Average, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
3 sec
Max. shutter speed
1/1600 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (tunnel)
White balance presets
5
7
Screen size
2.5"
2"
Screen resolution
230,000 dots
154,000 dots
Video capture
Max. video resolution
Storage types
SD/SDHC/MMC card
xD Picture Card
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-5L battery
AA (2) batteries (NiMH recommended)
Weight
195 g
260 g
Dimensions
95 x 57 x 27 mm
105 x 63 x 34 mm
Year
2008
2004




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXY DIGITAL 820 IS diagonal

The diagonal of IXY DIGITAL 820 IS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Fujifilm E550 Zoom diagonal

The diagonal of E550 Zoom sensor is not 1/1.7 or 0.59" (14.9 mm) as you might expect, but approximately two thirds of that value - 9.41 mm. If you want to know why, see sensor sizes.

w = 7.53 mm
h = 5.64 mm
Diagonal =  7.53² + 5.64²   = 9.41 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXY DIGITAL 820 IS sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

E550 Zoom sensor area

Width = 7.53 mm
Height = 5.64 mm

Surface area = 7.53 × 5.64 = 42.47 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXY DIGITAL 820 IS pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Pixel pitch =   6.16  × 1000  = 1.69 µm
3647

E550 Zoom pixel pitch

Sensor width = 7.53 mm
Sensor resolution width = 2835 pixels
Pixel pitch =   7.53  × 1000  = 2.66 µm
2835


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXY DIGITAL 820 IS pixel area

Pixel pitch = 1.69 µm

Pixel area = 1.69² = 2.86 µm²

E550 Zoom pixel area

Pixel pitch = 2.66 µm

Pixel area = 2.66² = 7.08 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXY DIGITAL 820 IS pixel density

Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm

Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²

E550 Zoom pixel density

Sensor resolution width = 2835 pixels
Sensor width = 0.753 cm

Pixel density = (2835 / 0.753)² / 1000000 = 14.17 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXY DIGITAL 820 IS sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33
X =  10.00 × 1000000  = 2742
1.33
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742

Sensor resolution = 3647 x 2742

E550 Zoom sensor resolution

Sensor width = 7.53 mm
Sensor height = 5.64 mm
Effective megapixels = 6.00
r = 7.53/5.64 = 1.34
X =  6.00 × 1000000  = 2116
1.34
Resolution horizontal: X × r = 2116 × 1.34 = 2835
Resolution vertical: X = 2116

Sensor resolution = 2835 x 2116


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXY DIGITAL 820 IS crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

E550 Zoom crop factor

Sensor diagonal in mm = 9.41 mm
Crop factor =   43.27  = 4.6
9.41

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXY DIGITAL 820 IS equivalent aperture

Crop factor = 5.62
Aperture = f3.2 - f5.7

35-mm equivalent aperture = (f3.2 - f5.7) × 5.62 = f18 - f32

E550 Zoom equivalent aperture

Crop factor = 4.6
Aperture = f2.8 - f5.6

35-mm equivalent aperture = (f2.8 - f5.6) × 4.6 = f12.9 - f25.8

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.