Canon PowerShot SX170 IS vs. Samsung WB250F

Comparison

change cameras »
PowerShot SX170 IS image
vs
WB250F image
Canon PowerShot SX170 IS Samsung WB250F
check price » check price »
Megapixels
16.00
14.20
Max. image resolution
4608 x 3456
4320 x 3240

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4612 x 3468
4346 x 3268
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Canon PowerShot SX170 IS Samsung WB250F
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
SX170 IS and WB250F sensors are the same size.
Pixel pitch
1.34 µm
1.42 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.08 µm (6%)
Pixel pitch of WB250F is approx. 6% higher than pixel pitch of SX170 IS.
Pixel area
1.8 µm²
2.02 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.22 µm² (12%)
A pixel on Samsung WB250F sensor is approx. 12% bigger than a pixel on Canon SX170 IS.
Pixel density
56.06 MP/cm²
49.78 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 6.28 µm (13%)
Canon SX170 IS has approx. 13% higher pixel density than Samsung WB250F.
To learn about the accuracy of these numbers, click here.



Specs

Canon SX170 IS
Samsung WB250F
Crop factor
5.62
5.62
Total megapixels
16.60
16.40
Effective megapixels
16.00
14.20
Optical zoom
16x
18x
Digital zoom
Yes
Yes
ISO sensitivity
Auto,100, 200, 400, 800, 1600
Auto, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
5 cm
80 cm
Macro focus range
1 cm
5 cm
Focal length (35mm equiv.)
28 - 448 mm
24 - 432 mm
Aperture priority
Yes
Yes
Max. aperture
f3.5 - f5.9
f3.2 - f5.8
Max. aperture (35mm equiv.)
f19.7 - f33.2
f18 - f32.6
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
15 sec
16 sec
Max. shutter speed
1/3200 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
5
Screen size
3"
3"
Screen resolution
230,000 dots
460,000 dots
Video capture
Max. video resolution
1280x720 (25p)
1920x1080 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-ion battery pack NB-6LH
Lithium-Ion rechargeable battery
Weight
251 g
226 g
Dimensions
108 x 71 x 43.9 mm
106.05 x 61.65 x 21.65 mm
Year
2013
2013




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon SX170 IS diagonal

The diagonal of SX170 IS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Samsung WB250F diagonal

The diagonal of WB250F sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

SX170 IS sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

WB250F sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

SX170 IS pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.16  × 1000  = 1.34 µm
4612

WB250F pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4346 pixels
Pixel pitch =   6.16  × 1000  = 1.42 µm
4346


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

SX170 IS pixel area

Pixel pitch = 1.34 µm

Pixel area = 1.34² = 1.8 µm²

WB250F pixel area

Pixel pitch = 1.42 µm

Pixel area = 1.42² = 2.02 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

SX170 IS pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm

Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²

WB250F pixel density

Sensor resolution width = 4346 pixels
Sensor width = 0.616 cm

Pixel density = (4346 / 0.616)² / 1000000 = 49.78 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

SX170 IS sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468

WB250F sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.20
r = 6.16/4.62 = 1.33
X =  14.20 × 1000000  = 3268
1.33
Resolution horizontal: X × r = 3268 × 1.33 = 4346
Resolution vertical: X = 3268

Sensor resolution = 4346 x 3268


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


SX170 IS crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

WB250F crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

SX170 IS equivalent aperture

Crop factor = 5.62
Aperture = f3.5 - f5.9

35-mm equivalent aperture = (f3.5 - f5.9) × 5.62 = f19.7 - f33.2

WB250F equivalent aperture

Crop factor = 5.62
Aperture = f3.2 - f5.8

35-mm equivalent aperture = (f3.2 - f5.8) × 5.62 = f18 - f32.6

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.