Casio Exilim EX-S600D vs. Samsung NX30

Comparison

change cameras »
Exilim EX-S600D image
vs
NX30 image
Casio Exilim EX-S600D Samsung NX30
check price » check price »
Megapixels
6.00
20.30
Max. image resolution
2816 x 2112
5472 x 3648

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
23.5 x 15.7 mm
Sensor resolution
2825 x 2124
5519 x 3679
Diagonal
7.19 mm
28.26 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 14.85
(ratio)
Casio Exilim EX-S600D Samsung NX30
Surface area:
24.84 mm² vs 368.95 mm²
Difference: 344.11 mm² (1385%)
NX30 sensor is approx. 14.85x bigger than S600D sensor.
Note: You are comparing sensors of very different generations. There is a gap of 8 years between Casio S600D (2006) and Samsung NX30 (2014). Eight years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
2.04 µm
4.26 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.22 µm (109%)
Pixel pitch of NX30 is approx. 109% higher than pixel pitch of S600D.
Pixel area
4.16 µm²
18.15 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 13.99 µm² (336%)
A pixel on Samsung NX30 sensor is approx. 336% bigger than a pixel on Casio S600D.
Pixel density
24.14 MP/cm²
5.52 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 18.62 µm (337%)
Casio S600D has approx. 337% higher pixel density than Samsung NX30.
To learn about the accuracy of these numbers, click here.



Specs

Casio S600D
Samsung NX30
Crop factor
6.02
1.53
Total megapixels
6.20
Effective megapixels
6.00
20.30
Optical zoom
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600
RAW
Manual focus
Normal focus range
40 cm
Macro focus range
15 cm
Focal length (35mm equiv.)
38 - 114 mm
Aperture priority
No
Yes
Max. aperture
f2.7 - f4.3
Max. aperture (35mm equiv.)
f16.3 - f25.9
n/a
Metering
Centre weighted, Multi-pattern, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/8 sec
30 sec
Max. shutter speed
1/2000 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
7
7
Screen size
2.2"
3"
Screen resolution
84,960 dots
1,036,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
Storage types
Secure Digital
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable
BP1410 (1410mAh)
Weight
115 g
375 g
Dimensions
90 x 59 x 16.1 mm
127 x 95.5 x 41.7 mm
Year
2006
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Casio S600D diagonal

The diagonal of S600D sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Samsung NX30 diagonal

w = 23.50 mm
h = 15.70 mm
Diagonal =  23.50² + 15.70²   = 28.26 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

S600D sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

NX30 sensor area

Width = 23.50 mm
Height = 15.70 mm

Surface area = 23.50 × 15.70 = 368.95 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

S600D pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2825 pixels
Pixel pitch =   5.75  × 1000  = 2.04 µm
2825

NX30 pixel pitch

Sensor width = 23.50 mm
Sensor resolution width = 5519 pixels
Pixel pitch =   23.50  × 1000  = 4.26 µm
5519


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

S600D pixel area

Pixel pitch = 2.04 µm

Pixel area = 2.04² = 4.16 µm²

NX30 pixel area

Pixel pitch = 4.26 µm

Pixel area = 4.26² = 18.15 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

S600D pixel density

Sensor resolution width = 2825 pixels
Sensor width = 0.575 cm

Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²

NX30 pixel density

Sensor resolution width = 5519 pixels
Sensor width = 2.35 cm

Pixel density = (5519 / 2.35)² / 1000000 = 5.52 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

S600D sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.00
r = 5.75/4.32 = 1.33
X =  6.00 × 1000000  = 2124
1.33
Resolution horizontal: X × r = 2124 × 1.33 = 2825
Resolution vertical: X = 2124

Sensor resolution = 2825 x 2124

NX30 sensor resolution

Sensor width = 23.50 mm
Sensor height = 15.70 mm
Effective megapixels = 20.30
r = 23.50/15.70 = 1.5
X =  20.30 × 1000000  = 3679
1.5
Resolution horizontal: X × r = 3679 × 1.5 = 5519
Resolution vertical: X = 3679

Sensor resolution = 5519 x 3679


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


S600D crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

NX30 crop factor

Sensor diagonal in mm = 28.26 mm
Crop factor =   43.27  = 1.53
28.26

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

S600D equivalent aperture

Crop factor = 6.02
Aperture = f2.7 - f4.3

35-mm equivalent aperture = (f2.7 - f4.3) × 6.02 = f16.3 - f25.9

NX30 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Samsung NX30, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Samsung NX30 is 1.53

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.