Epson PhotoPC 3000 Zoom vs. Sony Cyber-shot DSC-RX1

Comparison

change cameras »
PhotoPC 3000 Zoom image
vs
Cyber-shot DSC-RX1 image
Epson PhotoPC 3000 Zoom Sony Cyber-shot DSC-RX1
check price » check price »
Megapixels
3.34
24.30
Max. image resolution
2544 x 1904
6000 x 4000

Sensor

Sensor type
CCD
CMOS
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
35.8 x 23.9 mm
Sensor resolution
2108 x 1585
6038 x 4025
Diagonal
8.89 mm
43.04 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 22.58
(ratio)
Epson PhotoPC 3000 Zoom Sony Cyber-shot DSC-RX1
Surface area:
37.90 mm² vs 855.62 mm²
Difference: 817.72 mm² (2158%)
RX1 sensor is approx. 22.58x bigger than 3000 Zoom sensor.
Note: You are comparing sensors of vastly different generations. There is a gap of 12 years between Epson 3000 Zoom (2000) and Sony RX1 (2012). Twelve years is a huge amount of time, technology wise, resulting in newer sensor being much more efficient than the older one.
Pixel pitch
3.37 µm
5.93 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.56 µm (76%)
Pixel pitch of RX1 is approx. 76% higher than pixel pitch of 3000 Zoom.
Pixel area
11.36 µm²
35.16 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 23.8 µm² (210%)
A pixel on Sony RX1 sensor is approx. 210% bigger than a pixel on Epson 3000 Zoom.
Pixel density
8.79 MP/cm²
2.84 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 5.95 µm (210%)
Epson 3000 Zoom has approx. 210% higher pixel density than Sony RX1.
To learn about the accuracy of these numbers, click here.



Specs

Epson 3000 Zoom
Sony RX1
Crop factor
4.87
1.01
Total megapixels
24.70
Effective megapixels
24.30
Optical zoom
3x
1x
Digital zoom
Yes
Yes
ISO sensitivity
100, 200, 400
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600
RAW
Manual focus
Normal focus range
50 cm
25 cm
Macro focus range
5 cm
Focal length (35mm equiv.)
34 - 102 mm
35 mm
Aperture priority
Yes
Yes
Max. aperture
f2.0 - f2.5
f2.0
Max. aperture (35mm equiv.)
f9.7 - f12.2
f2
Metering
256-segment Matrix, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV, 1/2 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
8 sec
30 sec
Max. shutter speed
1/750 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Electronic and Optical (optional)
White balance presets
4
9
Screen size
1.8"
3"
Screen resolution
72,000 dots
1,229,000 dots
Video capture
Max. video resolution
Storage types
CompactFlash type I
SD/SDHC/SDXC, Memory Stick Duo/Pro Duo/Pro-HG Duo
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA NiMH (4) batteries (supplied)
Lithium-Ion NP-BX1 battery
Weight
360 g
482 g
Dimensions
107 x 88 x 65 mm
113 x 65 x 70 mm
Year
2000
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Epson 3000 Zoom diagonal

The diagonal of 3000 Zoom sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm

Sony RX1 diagonal

w = 35.80 mm
h = 23.90 mm
Diagonal =  35.80² + 23.90²   = 43.04 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

3000 Zoom sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²

RX1 sensor area

Width = 35.80 mm
Height = 23.90 mm

Surface area = 35.80 × 23.90 = 855.62 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

3000 Zoom pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2108 pixels
Pixel pitch =   7.11  × 1000  = 3.37 µm
2108

RX1 pixel pitch

Sensor width = 35.80 mm
Sensor resolution width = 6038 pixels
Pixel pitch =   35.80  × 1000  = 5.93 µm
6038


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

3000 Zoom pixel area

Pixel pitch = 3.37 µm

Pixel area = 3.37² = 11.36 µm²

RX1 pixel area

Pixel pitch = 5.93 µm

Pixel area = 5.93² = 35.16 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

3000 Zoom pixel density

Sensor resolution width = 2108 pixels
Sensor width = 0.711 cm

Pixel density = (2108 / 0.711)² / 1000000 = 8.79 MP/cm²

RX1 pixel density

Sensor resolution width = 6038 pixels
Sensor width = 3.58 cm

Pixel density = (6038 / 3.58)² / 1000000 = 2.84 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

3000 Zoom sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 3.34
r = 7.11/5.33 = 1.33
X =  3.34 × 1000000  = 1585
1.33
Resolution horizontal: X × r = 1585 × 1.33 = 2108
Resolution vertical: X = 1585

Sensor resolution = 2108 x 1585

RX1 sensor resolution

Sensor width = 35.80 mm
Sensor height = 23.90 mm
Effective megapixels = 24.30
r = 35.80/23.90 = 1.5
X =  24.30 × 1000000  = 4025
1.5
Resolution horizontal: X × r = 4025 × 1.5 = 6038
Resolution vertical: X = 4025

Sensor resolution = 6038 x 4025


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


3000 Zoom crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

RX1 crop factor

Sensor diagonal in mm = 43.04 mm
Crop factor =   43.27  = 1.01
43.04

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

3000 Zoom equivalent aperture

Crop factor = 4.87
Aperture = f2.0 - f2.5

35-mm equivalent aperture = (f2.0 - f2.5) × 4.87 = f9.7 - f12.2

RX1 equivalent aperture

Crop factor = 1.01
Aperture = f2.0

35-mm equivalent aperture = (f2.0) × 1.01 = f2

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.