Fujifilm FinePix J27 vs. Nikon Coolpix 5700
Comparison
change cameras » | |||||
|
vs |
|
|||
Fujifilm FinePix J27 | Nikon Coolpix 5700 | ||||
check price » | check price » |
Megapixels
10.00
4.90
Max. image resolution
3664 x 2748
2560 x 1920
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
2/3" (~ 8.8 x 6.6 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 2.04 |
(ratio) | ||
Fujifilm FinePix J27 | Nikon Coolpix 5700 |
Surface area:
28.46 mm² | vs | 58.08 mm² |
Difference: 29.62 mm² (104%)
5700 sensor is approx. 2.04x bigger than J27 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 7 years between Fujifilm J27 (2009) and Nikon 5700 (2002).
Seven years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 9.04 µm² (316%)
A pixel on Nikon 5700 sensor is approx. 316% bigger than a pixel on Fujifilm J27.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Fujifilm J27
Nikon 5700
Total megapixels
5.20
Effective megapixels
4.90
Optical zoom
Yes
8x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200
Auto, 100, 200, 400, 800
RAW
Manual focus
Normal focus range
60 cm
50 cm
Macro focus range
10 cm
3 cm
Focal length (35mm equiv.)
32 - 96 mm
35 - 280 mm
Aperture priority
No
Yes
Max. aperture
f2.9 - f5.2
f2.8 - f4.2
Metering
TTL 256-zones metering
256-segment Matrix, Centre weighted, Spot, Spot-AF
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
8 sec
Bulb+8 sec
Max. shutter speed
1/1400 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
6
6
Screen size
2.7"
1.5"
Screen resolution
230,000 dots
110,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
CompactFlash type I, CompactFlash type II, Microdrive
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Li-Ion
AA (4) batteries (NiMH recommended)
Weight
113 g
530 g
Dimensions
92 x 55.9 x 20 mm
108 x 76 x 102 mm
Year
2009
2002
Choose cameras to compare
Popular comparisons:
- Fujifilm FinePix J27 vs. Fujifilm FinePix J250
- Fujifilm FinePix J27 vs. Fujifilm FinePix J29
- Fujifilm FinePix J27 vs. Fujifilm FinePix J28
- Fujifilm FinePix J27 vs. Olympus Stylus 1040
- Fujifilm FinePix J27 vs. Fujifilm FinePix J25
- Fujifilm FinePix J27 vs. Nikon Coolpix 3700
- Fujifilm FinePix J27 vs. Nikon Coolpix S3700
- Fujifilm FinePix J27 vs. Fujifilm FinePix J38
- Fujifilm FinePix J27 vs. Canon IXUS 165
- Fujifilm FinePix J27 vs. Fujifilm FinePix J30
- Fujifilm FinePix J27 vs. Fujifilm FinePix Z35
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Fujifilm J27 diagonal
The diagonal of J27 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Nikon 5700 diagonal
The diagonal of 5700 sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of
that value - 11 mm. If you want to know why, see
sensor sizes.
w = 8.80 mm
h = 6.60 mm
w = 8.80 mm
h = 6.60 mm
Diagonal = √ | 8.80² + 6.60² | = 11.00 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
J27 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
5700 sensor area
Width = 8.80 mm
Height = 6.60 mm
Surface area = 8.80 × 6.60 = 58.08 mm²
Height = 6.60 mm
Surface area = 8.80 × 6.60 = 58.08 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
J27 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Sensor resolution width = 3647 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.69 µm |
3647 |
5700 pixel pitch
Sensor width = 8.80 mm
Sensor resolution width = 2552 pixels
Sensor resolution width = 2552 pixels
Pixel pitch = | 8.80 | × 1000 | = 3.45 µm |
2552 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
J27 pixel area
Pixel pitch = 1.69 µm
Pixel area = 1.69² = 2.86 µm²
Pixel area = 1.69² = 2.86 µm²
5700 pixel area
Pixel pitch = 3.45 µm
Pixel area = 3.45² = 11.9 µm²
Pixel area = 3.45² = 11.9 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
J27 pixel density
Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
5700 pixel density
Sensor resolution width = 2552 pixels
Sensor width = 0.88 cm
Pixel density = (2552 / 0.88)² / 1000000 = 8.41 MP/cm²
Sensor width = 0.88 cm
Pixel density = (2552 / 0.88)² / 1000000 = 8.41 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
J27 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
5700 sensor resolution
Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 4.90
Resolution horizontal: X × r = 1919 × 1.33 = 2552
Resolution vertical: X = 1919
Sensor resolution = 2552 x 1919
Sensor height = 6.60 mm
Effective megapixels = 4.90
r = 8.80/6.60 = 1.33 |
|
Resolution vertical: X = 1919
Sensor resolution = 2552 x 1919
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
J27 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
5700 crop factor
Sensor diagonal in mm = 11.00 mm
Crop factor = | 43.27 | = 3.93 |
11.00 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
J27 equivalent aperture
Crop factor = 5.62
Aperture = f2.9 - f5.2
35-mm equivalent aperture = (f2.9 - f5.2) × 5.62 = f16.3 - f29.2
Aperture = f2.9 - f5.2
35-mm equivalent aperture = (f2.9 - f5.2) × 5.62 = f16.3 - f29.2
5700 equivalent aperture
Crop factor = 3.93
Aperture = f2.8 - f4.2
35-mm equivalent aperture = (f2.8 - f4.2) × 3.93 = f11 - f16.5
Aperture = f2.8 - f4.2
35-mm equivalent aperture = (f2.8 - f4.2) × 3.93 = f11 - f16.5
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.