Fujifilm FinePix S100fs vs. Sony Alpha SLT-A37

Comparison

change cameras »
FinePix S100fs image
vs
Alpha SLT-A37 image
Fujifilm FinePix S100fs Sony Alpha SLT-A37
check price » check price »
Megapixels
11.10
16.10
Max. image resolution
3840 x 2880
4912 x 3264

Sensor

Sensor type
CCD
CMOS
Sensor size
2/3" (~ 8.8 x 6.6 mm)
23.5 x 15.6 mm
Sensor resolution
3842 x 2889
4930 x 3265
Diagonal
11.00 mm
28.21 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 6.31
(ratio)
Fujifilm FinePix S100fs Sony Alpha SLT-A37
Surface area:
58.08 mm² vs 366.60 mm²
Difference: 308.52 mm² (531%)
Alpha SLT-A37 sensor is approx. 6.31x bigger than S100fs sensor.
Note: You are comparing cameras of different generations. There is a 4 year gap between Fujifilm S100fs (2008) and Sony Alpha SLT-A37 (2012). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.29 µm
4.77 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.48 µm (108%)
Pixel pitch of Alpha SLT-A37 is approx. 108% higher than pixel pitch of S100fs.
Pixel area
5.24 µm²
22.75 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 17.51 µm² (334%)
A pixel on Sony Alpha SLT-A37 sensor is approx. 334% bigger than a pixel on Fujifilm S100fs.
Pixel density
19.06 MP/cm²
4.4 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 14.66 µm (333%)
Fujifilm S100fs has approx. 333% higher pixel density than Sony Alpha SLT-A37.
To learn about the accuracy of these numbers, click here.



Specs

Fujifilm S100fs
Sony Alpha SLT-A37
Crop factor
3.93
1.53
Total megapixels
16.70
Effective megapixels
11.10
16.10
Optical zoom
14.3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 64, 100, 200, 400, 800, 1600, 3200 (6400 at 6MP, 10000 at 3MP)
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
2 cm
Focal length (35mm equiv.)
28 - 400 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f5.3
Max. aperture (35mm equiv.)
f11 - f20.8
n/a
Metering
256-segment Matrix
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
7
6
Screen size
2.5"
2.6"
Screen resolution
230,000 dots
230,400 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital, xD Picture card
SD/SDHC/SDXC/Memory Stick Pro Duo/ Pro-HG Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-140 Li-ion battery
Rechargeable NP-FW50 battery
Weight
950 g
506 g
Dimensions
133 x 94 x 150 mm
124 x 92 x 85 mm
Year
2008
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Fujifilm S100fs diagonal

The diagonal of S100fs sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of that value - 11 mm. If you want to know why, see sensor sizes.

w = 8.80 mm
h = 6.60 mm
Diagonal =  8.80² + 6.60²   = 11.00 mm

Sony Alpha SLT-A37 diagonal

w = 23.50 mm
h = 15.60 mm
Diagonal =  23.50² + 15.60²   = 28.21 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

S100fs sensor area

Width = 8.80 mm
Height = 6.60 mm

Surface area = 8.80 × 6.60 = 58.08 mm²

Alpha SLT-A37 sensor area

Width = 23.50 mm
Height = 15.60 mm

Surface area = 23.50 × 15.60 = 366.60 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

S100fs pixel pitch

Sensor width = 8.80 mm
Sensor resolution width = 3842 pixels
Pixel pitch =   8.80  × 1000  = 2.29 µm
3842

Alpha SLT-A37 pixel pitch

Sensor width = 23.50 mm
Sensor resolution width = 4930 pixels
Pixel pitch =   23.50  × 1000  = 4.77 µm
4930


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

S100fs pixel area

Pixel pitch = 2.29 µm

Pixel area = 2.29² = 5.24 µm²

Alpha SLT-A37 pixel area

Pixel pitch = 4.77 µm

Pixel area = 4.77² = 22.75 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

S100fs pixel density

Sensor resolution width = 3842 pixels
Sensor width = 0.88 cm

Pixel density = (3842 / 0.88)² / 1000000 = 19.06 MP/cm²

Alpha SLT-A37 pixel density

Sensor resolution width = 4930 pixels
Sensor width = 2.35 cm

Pixel density = (4930 / 2.35)² / 1000000 = 4.4 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

S100fs sensor resolution

Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 11.10
r = 8.80/6.60 = 1.33
X =  11.10 × 1000000  = 2889
1.33
Resolution horizontal: X × r = 2889 × 1.33 = 3842
Resolution vertical: X = 2889

Sensor resolution = 3842 x 2889

Alpha SLT-A37 sensor resolution

Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 16.10
r = 23.50/15.60 = 1.51
X =  16.10 × 1000000  = 3265
1.51
Resolution horizontal: X × r = 3265 × 1.51 = 4930
Resolution vertical: X = 3265

Sensor resolution = 4930 x 3265


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


S100fs crop factor

Sensor diagonal in mm = 11.00 mm
Crop factor =   43.27  = 3.93
11.00

Alpha SLT-A37 crop factor

Sensor diagonal in mm = 28.21 mm
Crop factor =   43.27  = 1.53
28.21

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

S100fs equivalent aperture

Crop factor = 3.93
Aperture = f2.8 - f5.3

35-mm equivalent aperture = (f2.8 - f5.3) × 3.93 = f11 - f20.8

Alpha SLT-A37 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Sony Alpha SLT-A37, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Sony Alpha SLT-A37 is 1.53

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.