Fujifilm XA2 vs. Fujifilm XM1
Comparison
change cameras »  

vs 


Fujifilm XA2  Fujifilm XM1  
check price »  check price » 
Megapixels
16.30
16.30
Max. image resolution
4896 x 3264
4896 x 3264
Sensor
Sensor type
CMOS
CMOS
Sensor size
23.6 x 15.6 mm
23.6 x 15.6 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »

vs 

1  :  1 
(ratio)  
Fujifilm XA2  Fujifilm XM1 
Surface area:
368.16 mm²  vs  368.16 mm² 
Difference: 0 mm² (0%)
XA2 and XM1 sensors are the same size.
Note: You are comparing cameras of different generations.
There is a 2 year gap between Fujifilm XA2 (2015) and Fujifilm XM1 (2013).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0 µm² (0%)
Fujifilm XA2 and Fujifilm XM1 have the same pixel area.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Fujifilm XA2
Fujifilm XM1
Total megapixels
16.50
16.50
Effective megapixels
16.30
16.30
Optical zoom
Digital zoom
No
ISO sensitivity
Auto, 2006400 (extended 10025600)
Auto, 200  6400 (100, 12800, 25600 with boost)
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
Aperture priority
Yes
Yes
Max. aperture
Metering
Multi, Spot, Average
Multi, Average, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Builtin flash
External flash
Viewfinder
None
None
White balance presets
6
7
Screen size
3"
3"
Screen resolution
920,000 dots
920,000 dots
Video capture
Max. video resolution
1920x1080 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NPW126 Liion battery
LithiumIon NPW126 rechargeable battery
Weight
350 g
330 g
Dimensions
116.9 x 66.5 x 40.4 mm
116.9 x 66.5 x 39 mm
Year
2015
2013
Choose cameras to compare
Popular comparisons:
 Fujifilm XA2 vs. Fujifilm XM1
 Fujifilm XA2 vs. Sony Alpha a5000
 Fujifilm XA2 vs. Fujifilm XE2
 Fujifilm XA2 vs. Sony Alpha a6000
 Fujifilm XA2 vs. Fujifilm XA3
 Fujifilm XA2 vs. Fujifilm X30
 Fujifilm XA2 vs. Olympus PEN EPL7
 Fujifilm XA2 vs. Canon EOS M3
 Fujifilm XA2 vs. Fujifilm XA1
 Fujifilm XA2 vs. Sony Alpha a5100
 Fujifilm XA2 vs. Fujifilm XE1
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √  w² + h² 
Fujifilm XA2 diagonal
w = 23.60 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √  23.60² + 15.60²  = 28.29 mm 
Fujifilm XM1 diagonal
w = 23.60 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √  23.60² + 15.60²  = 28.29 mm 
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
XA2 sensor area
Width = 23.60 mm
Height = 15.60 mm
Surface area = 23.60 × 15.60 = 368.16 mm²
Height = 15.60 mm
Surface area = 23.60 × 15.60 = 368.16 mm²
XM1 sensor area
Width = 23.60 mm
Height = 15.60 mm
Surface area = 23.60 × 15.60 = 368.16 mm²
Height = 15.60 mm
Surface area = 23.60 × 15.60 = 368.16 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =  sensor width in mm  × 1000 
sensor resolution width in pixels 
XA2 pixel pitch
Sensor width = 23.60 mm
Sensor resolution width = 4962 pixels
Sensor resolution width = 4962 pixels
Pixel pitch =  23.60  × 1000  = 4.76 µm 
4962 
XM1 pixel pitch
Sensor width = 23.60 mm
Sensor resolution width = 4962 pixels
Sensor resolution width = 4962 pixels
Pixel pitch =  23.60  × 1000  = 4.76 µm 
4962 
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area =  sensor surface area in mm² 
effective megapixels 
XA2 pixel area
Pixel pitch = 4.76 µm
Pixel area = 4.76² = 22.66 µm²
Pixel area = 4.76² = 22.66 µm²
XM1 pixel area
Pixel pitch = 4.76 µm
Pixel area = 4.76² = 22.66 µm²
Pixel area = 4.76² = 22.66 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = (  sensor resolution width in pixels  )² / 1000000 
sensor width in cm 
One could also use this formula:
Pixel density =  effective megapixels × 1000000  / 10000 
sensor surface area in mm² 
XA2 pixel density
Sensor resolution width = 4962 pixels
Sensor width = 2.36 cm
Pixel density = (4962 / 2.36)² / 1000000 = 4.42 MP/cm²
Sensor width = 2.36 cm
Pixel density = (4962 / 2.36)² / 1000000 = 4.42 MP/cm²
XM1 pixel density
Sensor resolution width = 4962 pixels
Sensor width = 2.36 cm
Pixel density = (4962 / 2.36)² / 1000000 = 4.42 MP/cm²
Sensor width = 2.36 cm
Pixel density = (4962 / 2.36)² / 1000000 = 4.42 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → 

Resolution horizontal: X × r
Resolution vertical: X
XA2 sensor resolution
Sensor width = 23.60 mm
Sensor height = 15.60 mm
Effective megapixels = 16.30
Resolution horizontal: X × r = 3286 × 1.51 = 4962
Resolution vertical: X = 3286
Sensor resolution = 4962 x 3286
Sensor height = 15.60 mm
Effective megapixels = 16.30
r = 23.60/15.60 = 1.51 

Resolution vertical: X = 3286
Sensor resolution = 4962 x 3286
XM1 sensor resolution
Sensor width = 23.60 mm
Sensor height = 15.60 mm
Effective megapixels = 16.30
Resolution horizontal: X × r = 3286 × 1.51 = 4962
Resolution vertical: X = 3286
Sensor resolution = 4962 x 3286
Sensor height = 15.60 mm
Effective megapixels = 16.30
r = 23.60/15.60 = 1.51 

Resolution vertical: X = 3286
Sensor resolution = 4962 x 3286
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =  43.27 mm 
sensor diagonal in mm 
XA2 crop factor
Sensor diagonal in mm = 28.29 mm
Crop factor =  43.27  = 1.53 
28.29 
XM1 crop factor
Sensor diagonal in mm = 28.29 mm
Crop factor =  43.27  = 1.53 
28.29 
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
XA2 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Fujifilm XA2, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Fujifilm XA2 is 1.53
Crop factor for Fujifilm XA2 is 1.53
XM1 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Fujifilm XM1, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Fujifilm XM1 is 1.53
Crop factor for Fujifilm XM1 is 1.53
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.