Fujifilm X-S1 vs. Fujifilm FinePix S100fs

Comparison

change cameras »
X-S1 image
vs
FinePix S100fs image
Fujifilm X-S1 Fujifilm FinePix S100fs
check price » check price »
Megapixels
12.00
11.10
Max. image resolution
4000 x 3000
3840 x 2880

Sensor

Sensor type
CMOS
CCD
Sensor size
2/3" (~ 8.8 x 6.6 mm)
2/3" (~ 8.8 x 6.6 mm)
Sensor resolution
3995 x 3004
3842 x 2889
Diagonal
11.00 mm
11.00 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Fujifilm X-S1 Fujifilm FinePix S100fs
Surface area:
58.08 mm² vs 58.08 mm²
Difference: 0 mm² (0%)
X-S1 and S100fs sensors are the same size.
Note: You are comparing cameras of different generations. There is a 3 year gap between Fujifilm X-S1 (2011) and Fujifilm S100fs (2008). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.2 µm
2.29 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.09 µm (4%)
Pixel pitch of S100fs is approx. 4% higher than pixel pitch of X-S1.
Pixel area
4.84 µm²
5.24 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.4 µm² (8%)
A pixel on Fujifilm S100fs sensor is approx. 8% bigger than a pixel on Fujifilm X-S1.
Pixel density
20.61 MP/cm²
19.06 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 1.55 µm (8%)
Fujifilm X-S1 has approx. 8% higher pixel density than Fujifilm S100fs.
To learn about the accuracy of these numbers, click here.



Specs

Fujifilm X-S1
Fujifilm S100fs
Crop factor
3.93
3.93
Total megapixels
Effective megapixels
12.00
11.10
Optical zoom
26x
14.3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1600, 2000, 2500, 3200, (4000, 5000, 6400, 12800 with boost)
Auto, 64, 100, 200, 400, 800, 1600, 3200 (6400 at 6MP, 10000 at 3MP)
RAW
Manual focus
Normal focus range
30 cm
50 cm
Macro focus range
1 cm
2 cm
Focal length (35mm equiv.)
24 - 624 mm
28 - 400 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f5.6
f2.8 - f5.3
Max. aperture (35mm equiv.)
f11 - f22
f11 - f20.8
Metering
Multi, Average, Spot
256-segment Matrix
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
6
7
Screen size
3"
2.5"
Screen resolution
460,000 dots
230,000 dots
Video capture
Max. video resolution
1920x1080 (30p)
Storage types
SD/SDHC/SDXC
SDHC, Secure Digital, xD Picture card
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NP-95 rechargeable battery
NP-140 Li-ion battery
Weight
920 g
950 g
Dimensions
135 x 107 x 149 mm
133 x 94 x 150 mm
Year
2011
2008




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Fujifilm X-S1 diagonal

The diagonal of X-S1 sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of that value - 11 mm. If you want to know why, see sensor sizes.

w = 8.80 mm
h = 6.60 mm
Diagonal =  8.80² + 6.60²   = 11.00 mm

Fujifilm S100fs diagonal

The diagonal of S100fs sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of that value - 11 mm. If you want to know why, see sensor sizes.

w = 8.80 mm
h = 6.60 mm
Diagonal =  8.80² + 6.60²   = 11.00 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

X-S1 sensor area

Width = 8.80 mm
Height = 6.60 mm

Surface area = 8.80 × 6.60 = 58.08 mm²

S100fs sensor area

Width = 8.80 mm
Height = 6.60 mm

Surface area = 8.80 × 6.60 = 58.08 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

X-S1 pixel pitch

Sensor width = 8.80 mm
Sensor resolution width = 3995 pixels
Pixel pitch =   8.80  × 1000  = 2.2 µm
3995

S100fs pixel pitch

Sensor width = 8.80 mm
Sensor resolution width = 3842 pixels
Pixel pitch =   8.80  × 1000  = 2.29 µm
3842


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

X-S1 pixel area

Pixel pitch = 2.2 µm

Pixel area = 2.2² = 4.84 µm²

S100fs pixel area

Pixel pitch = 2.29 µm

Pixel area = 2.29² = 5.24 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

X-S1 pixel density

Sensor resolution width = 3995 pixels
Sensor width = 0.88 cm

Pixel density = (3995 / 0.88)² / 1000000 = 20.61 MP/cm²

S100fs pixel density

Sensor resolution width = 3842 pixels
Sensor width = 0.88 cm

Pixel density = (3842 / 0.88)² / 1000000 = 19.06 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

X-S1 sensor resolution

Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 12.00
r = 8.80/6.60 = 1.33
X =  12.00 × 1000000  = 3004
1.33
Resolution horizontal: X × r = 3004 × 1.33 = 3995
Resolution vertical: X = 3004

Sensor resolution = 3995 x 3004

S100fs sensor resolution

Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 11.10
r = 8.80/6.60 = 1.33
X =  11.10 × 1000000  = 2889
1.33
Resolution horizontal: X × r = 2889 × 1.33 = 3842
Resolution vertical: X = 2889

Sensor resolution = 3842 x 2889


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


X-S1 crop factor

Sensor diagonal in mm = 11.00 mm
Crop factor =   43.27  = 3.93
11.00

S100fs crop factor

Sensor diagonal in mm = 11.00 mm
Crop factor =   43.27  = 3.93
11.00

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

X-S1 equivalent aperture

Crop factor = 3.93
Aperture = f2.8 - f5.6

35-mm equivalent aperture = (f2.8 - f5.6) × 3.93 = f11 - f22

S100fs equivalent aperture

Crop factor = 3.93
Aperture = f2.8 - f5.3

35-mm equivalent aperture = (f2.8 - f5.3) × 3.93 = f11 - f20.8

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.