Fujifilm X-T30 II vs. Nikon Z50
Comparison
change cameras » | |||||
|
vs |
|
|||
Fujifilm X-T30 II | Nikon Z50 | ||||
check price » | check price » |
Megapixels
26.10
20.90
Max. image resolution
6240 x 4160
5568 x 3712
Sensor
Sensor type
CMOS
CMOS
Sensor size
23.5 x 15.6 mm
23.5 x 15.7 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.01 |
(ratio) | ||
Fujifilm X-T30 II | Nikon Z50 |
Surface area:
366.60 mm² | vs | 368.95 mm² |
Difference: 2.35 mm² (0.6%)
Z50 sensor is slightly bigger than X-T30 II sensor (only 0.6% difference).
Note: You are comparing cameras of different generations.
There is a 2 year gap between Fujifilm X-T30 II (2021) and Nikon Z50 (2019).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.65 µm² (26%)
A pixel on Nikon Z50 sensor is approx. 26% bigger than a pixel on Fujifilm X-T30 II.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Fujifilm X-T30 II
Nikon Z50
Total megapixels
21.51
Effective megapixels
26.10
20.90
Optical zoom
Digital zoom
ISO sensitivity
Auto, 160-12800 (extends to 80-51200)
Auto, 100-51200 (expandable to 204,800)
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
Aperture priority
Yes
Yes
Max. aperture
Metering
Multi, Center-weighted, Average, Spot
Multi, Center-weighted, Highlight-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
900 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
7
8
Screen size
3"
3.2"
Screen resolution
1,620,000 dots
1,036,800 dots
Video capture
Max. video resolution
4096x2160 (30p/25p/24p/23.98p)
3840x2160 (30p/25p/24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 3.0 (5 GBit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-W126S lithium-ion battery
EN-EL25 lithium-ion battery
Weight
383 g
450 g
Dimensions
118.4 x 82.8 x 46.8 mm
126.5 x 93.5 x 60 mm
Year
2021
2019
Choose cameras to compare
Popular comparisons:
- Fujifilm X-T30 II vs. Fujifilm X100V
- Fujifilm X-T30 II vs. Fujifilm X-T4
- Fujifilm X-T30 II vs. Ricoh GR IIIx
- Fujifilm X-T30 II vs. Fujifilm X-S10
- Fujifilm X-T30 II vs. Sony Alpha a6400
- Fujifilm X-T30 II vs. Nikon Z50
- Fujifilm X-T30 II vs. Fujifilm X-E4
- Fujifilm X-T30 II vs. Fujifilm X-T3
- Fujifilm X-T30 II vs. Sony ZV-E10
- Fujifilm X-T30 II vs. Fujifilm X-T30
- Fujifilm X-T30 II vs. Fujifilm X-T200
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Fujifilm X-T30 II diagonal
w = 23.50 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √ | 23.50² + 15.60² | = 28.21 mm |
Nikon Z50 diagonal
w = 23.50 mm
h = 15.70 mm
h = 15.70 mm
Diagonal = √ | 23.50² + 15.70² | = 28.26 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
X-T30 II sensor area
Width = 23.50 mm
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Z50 sensor area
Width = 23.50 mm
Height = 15.70 mm
Surface area = 23.50 × 15.70 = 368.95 mm²
Height = 15.70 mm
Surface area = 23.50 × 15.70 = 368.95 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
X-T30 II pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 6277 pixels
Sensor resolution width = 6277 pixels
Pixel pitch = | 23.50 | × 1000 | = 3.74 µm |
6277 |
Z50 pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 5600 pixels
Sensor resolution width = 5600 pixels
Pixel pitch = | 23.50 | × 1000 | = 4.2 µm |
5600 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
X-T30 II pixel area
Pixel pitch = 3.74 µm
Pixel area = 3.74² = 13.99 µm²
Pixel area = 3.74² = 13.99 µm²
Z50 pixel area
Pixel pitch = 4.2 µm
Pixel area = 4.2² = 17.64 µm²
Pixel area = 4.2² = 17.64 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
X-T30 II pixel density
Sensor resolution width = 6277 pixels
Sensor width = 2.35 cm
Pixel density = (6277 / 2.35)² / 1000000 = 7.13 MP/cm²
Sensor width = 2.35 cm
Pixel density = (6277 / 2.35)² / 1000000 = 7.13 MP/cm²
Z50 pixel density
Sensor resolution width = 5600 pixels
Sensor width = 2.35 cm
Pixel density = (5600 / 2.35)² / 1000000 = 5.68 MP/cm²
Sensor width = 2.35 cm
Pixel density = (5600 / 2.35)² / 1000000 = 5.68 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
X-T30 II sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 26.10
Resolution horizontal: X × r = 4157 × 1.51 = 6277
Resolution vertical: X = 4157
Sensor resolution = 6277 x 4157
Sensor height = 15.60 mm
Effective megapixels = 26.10
r = 23.50/15.60 = 1.51 |
|
Resolution vertical: X = 4157
Sensor resolution = 6277 x 4157
Z50 sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.70 mm
Effective megapixels = 20.90
Resolution horizontal: X × r = 3733 × 1.5 = 5600
Resolution vertical: X = 3733
Sensor resolution = 5600 x 3733
Sensor height = 15.70 mm
Effective megapixels = 20.90
r = 23.50/15.70 = 1.5 |
|
Resolution vertical: X = 3733
Sensor resolution = 5600 x 3733
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
X-T30 II crop factor
Sensor diagonal in mm = 28.21 mm
Crop factor = | 43.27 | = 1.53 |
28.21 |
Z50 crop factor
Sensor diagonal in mm = 28.26 mm
Crop factor = | 43.27 | = 1.53 |
28.26 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
X-T30 II equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Fujifilm X-T30 II, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Fujifilm X-T30 II is 1.53
Crop factor for Fujifilm X-T30 II is 1.53
Z50 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Nikon Z50, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Nikon Z50 is 1.53
Crop factor for Nikon Z50 is 1.53
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.