HP Photosmart M527 vs. Kodak EasyShare DX7440

Comparison

change cameras »
Photosmart M527 image
vs
EasyShare DX7440 image
HP Photosmart M527 Kodak EasyShare DX7440
check price » check price »
Megapixels
6.00
4.00
Max. image resolution
2800 x 2128
2304 x 1728

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor resolution
2825 x 2124
2306 x 1734
Diagonal
7.19 mm
7.19 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
HP Photosmart M527 Kodak EasyShare DX7440
Surface area:
24.84 mm² vs 24.84 mm²
Difference: 0 mm² (0%)
M527 and DX7440 sensors are the same size.
Note: You are comparing cameras of different generations. There is a 2 year gap between HP M527 (2006) and Kodak DX7440 (2004). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.04 µm
2.49 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.45 µm (22%)
Pixel pitch of DX7440 is approx. 22% higher than pixel pitch of M527.
Pixel area
4.16 µm²
6.2 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.04 µm² (49%)
A pixel on Kodak DX7440 sensor is approx. 49% bigger than a pixel on HP M527.
Pixel density
24.14 MP/cm²
16.08 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 8.06 µm (50%)
HP M527 has approx. 50% higher pixel density than Kodak DX7440.
To learn about the accuracy of these numbers, click here.



Specs

HP M527
Kodak DX7440
Crop factor
6.02
6.02
Total megapixels
4.20
Effective megapixels
4.00
Optical zoom
3x
4x
Digital zoom
Yes
Yes
ISO sensitivity
Auto
Auto, 80, 100, 200, 400, 800
RAW
Manual focus
Normal focus range
50 cm
50 cm
Macro focus range
12 cm
10 cm
Focal length (35mm equiv.)
38 - 114 mm
33 - 132 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.8
f2.8 - f4.8
Max. aperture (35mm equiv.)
f16.9 - f28.9
f16.9 - f28.9
Metering
Centre weighted
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
2 sec
64 sec
Max. shutter speed
1/1000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (tunnel)
White balance presets
5
4
Screen size
2"
2.2"
Screen resolution
115,200 dots
153,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
SD/MMC card, Internal
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
AA (2) batteries (NiMH recommended)
Kodak Lithium-Ion, dock (optional)
Weight
153 g
270 g
Dimensions
95 x 32 x 62 mm
100 x 69 x 40 mm
Year
2006
2004




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

HP M527 diagonal

The diagonal of M527 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Kodak DX7440 diagonal

The diagonal of DX7440 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

M527 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

DX7440 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

M527 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2825 pixels
Pixel pitch =   5.75  × 1000  = 2.04 µm
2825

DX7440 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2306 pixels
Pixel pitch =   5.75  × 1000  = 2.49 µm
2306


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

M527 pixel area

Pixel pitch = 2.04 µm

Pixel area = 2.04² = 4.16 µm²

DX7440 pixel area

Pixel pitch = 2.49 µm

Pixel area = 2.49² = 6.2 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

M527 pixel density

Sensor resolution width = 2825 pixels
Sensor width = 0.575 cm

Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²

DX7440 pixel density

Sensor resolution width = 2306 pixels
Sensor width = 0.575 cm

Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

M527 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.00
r = 5.75/4.32 = 1.33
X =  6.00 × 1000000  = 2124
1.33
Resolution horizontal: X × r = 2124 × 1.33 = 2825
Resolution vertical: X = 2124

Sensor resolution = 2825 x 2124

DX7440 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 4.00
r = 5.75/4.32 = 1.33
X =  4.00 × 1000000  = 1734
1.33
Resolution horizontal: X × r = 1734 × 1.33 = 2306
Resolution vertical: X = 1734

Sensor resolution = 2306 x 1734


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


M527 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

DX7440 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

M527 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 6.02 = f16.9 - f28.9

DX7440 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 6.02 = f16.9 - f28.9

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.