Kodak EasyShare M550 vs. Samsung WB550

Comparison

change cameras »
EasyShare M550 image
vs
WB550 image
Kodak EasyShare M550 Samsung WB550
check price » check price »
Megapixels
12.30
12.40
Max. image resolution
4000 x 3000
4000 x 3000

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor resolution
4045 x 3041
4060 x 3053
Diagonal
7.70 mm
7.60 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.03 : 1
(ratio)
Kodak EasyShare M550 Samsung WB550
Surface area:
28.46 mm² vs 27.72 mm²
Difference: 0.74 mm² (3%)
M550 sensor is slightly bigger than WB550 sensor (only 3% difference).
Pixel pitch
1.52 µm
1.5 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.02 µm (1%)
Pixel pitch of M550 is approx. 1% higher than pixel pitch of WB550.
Pixel area
2.31 µm²
2.25 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.06 µm² (3%)
A pixel on Kodak M550 sensor is approx. 3% bigger than a pixel on Samsung WB550.
Pixel density
43.12 MP/cm²
44.59 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 1.47 µm (3%)
Samsung WB550 has approx. 3% higher pixel density than Kodak M550.
To learn about the accuracy of these numbers, click here.



Specs

Kodak M550
Samsung WB550
Crop factor
5.62
5.69
Total megapixels
12.70
Effective megapixels
12.30
Optical zoom
5x
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100 - 1600
Auto, 80, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
50 cm
50 cm
Macro focus range
10 cm
5 cm
Focal length (35mm equiv.)
28 - 140 mm
24 - 240 mm
Aperture priority
No
No
Max. aperture
f2.8 - f5.0
f3.3 - f5.8
Max. aperture (35mm equiv.)
f15.7 - f28.1
f18.8 - f33
Metering
Multi, Center-weighted, Spot
Centre weighted, Multi Spot, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
30 sec
16 sec
Max. shutter speed
1/1400 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
4
6
Screen size
2.7"
3"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Rechargeable Battery KLIC-7006
Li-Ion
Weight
125 g
225 g
Dimensions
98 x 58 x 23 mm
105 x 61.4 x 36.5 mm
Year
2010
2009




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Kodak M550 diagonal

The diagonal of M550 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Samsung WB550 diagonal

The diagonal of WB550 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

M550 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

WB550 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

M550 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4045 pixels
Pixel pitch =   6.16  × 1000  = 1.52 µm
4045

WB550 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4060 pixels
Pixel pitch =   6.08  × 1000  = 1.5 µm
4060


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

M550 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²

WB550 pixel area

Pixel pitch = 1.5 µm

Pixel area = 1.5² = 2.25 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

M550 pixel density

Sensor resolution width = 4045 pixels
Sensor width = 0.616 cm

Pixel density = (4045 / 0.616)² / 1000000 = 43.12 MP/cm²

WB550 pixel density

Sensor resolution width = 4060 pixels
Sensor width = 0.608 cm

Pixel density = (4060 / 0.608)² / 1000000 = 44.59 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

M550 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.30
r = 6.16/4.62 = 1.33
X =  12.30 × 1000000  = 3041
1.33
Resolution horizontal: X × r = 3041 × 1.33 = 4045
Resolution vertical: X = 3041

Sensor resolution = 4045 x 3041

WB550 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.40
r = 6.08/4.56 = 1.33
X =  12.40 × 1000000  = 3053
1.33
Resolution horizontal: X × r = 3053 × 1.33 = 4060
Resolution vertical: X = 3053

Sensor resolution = 4060 x 3053


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


M550 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

WB550 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

M550 equivalent aperture

Crop factor = 5.62
Aperture = f2.8 - f5.0

35-mm equivalent aperture = (f2.8 - f5.0) × 5.62 = f15.7 - f28.1

WB550 equivalent aperture

Crop factor = 5.69
Aperture = f3.3 - f5.8

35-mm equivalent aperture = (f3.3 - f5.8) × 5.69 = f18.8 - f33

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.