Leica Digilux vs. Leica Digilux Zoom

Comparison

change cameras »
Digilux image
vs
Digilux Zoom image
Leica Digilux Leica Digilux Zoom
check price » check price »
Megapixels
1.30
1.30
Max. image resolution
1280 x 1024
1280 x 1024

Sensor

Sensor type
CCD
CCD
Sensor size
1/2" (~ 6.4 x 4.8 mm)
1/2" (~ 6.4 x 4.8 mm)
Sensor resolution
1315 x 989
1315 x 989
Diagonal
8.00 mm
8.00 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Leica Digilux Leica Digilux Zoom
Surface area:
30.72 mm² vs 30.72 mm²
Difference: 0 mm² (0%)
Digilux and Digilux Zoom sensors are the same size.
Note: You are comparing cameras of different generations. There is a 2 year gap between Leica Digilux (1998) and Leica Digilux Zoom (2000). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
4.87 µm
4.87 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0 µm (0%)
Digilux and Digilux Zoom have the same pixel pitch.
Pixel area
23.72 µm²
23.72 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0 µm² (0%)
Leica Digilux and Leica Digilux Zoom have the same pixel area.
Pixel density
4.22 MP/cm²
4.22 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 0 µm (0%)
Leica Digilux and Leica Digilux Zoom have the same pixel density.
To learn about the accuracy of these numbers, click here.



Specs

Leica Digilux
Leica Digilux Zoom
Crop factor
5.41
5.41
Total megapixels
1.50
1.50
Effective megapixels
1.30
1.30
Optical zoom
1x
3x
Digital zoom
Yes
Yes
ISO sensitivity
100
125
RAW
Manual focus
Normal focus range
50 cm
80 cm
Macro focus range
9 cm
20 cm
Focal length (35mm equiv.)
35 mm
38 - 114 mm
Aperture priority
No
No
Max. aperture
f3.2 - f8.0
f2.8 - f4.5
Max. aperture (35mm equiv.)
f17.3 - f43.3
f15.1 - f24.3
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
-0.9 - +1.5 EV (in 1/3 EV steps)
-0.9 - +1.5 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
1/4 sec
1/4 sec
Max. shutter speed
1/1000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (tunnel)
White balance presets
4
7
Screen size
2"
2"
Screen resolution
110,000 dots
130,000 dots
Video capture
Max. video resolution
Storage types
SmartMedia
SmartMedia
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion (NP-100)
Lithium-Ion (NP-80)
Weight
260 g
270 g
Dimensions
80 x 101 x 33 mm
79 x 98 x 33 mm
Year
1998
2000




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Leica Digilux diagonal

The diagonal of Digilux sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm

Leica Digilux Zoom diagonal

The diagonal of Digilux Zoom sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Digilux sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²

Digilux Zoom sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Digilux pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 1315 pixels
Pixel pitch =   6.40  × 1000  = 4.87 µm
1315

Digilux Zoom pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 1315 pixels
Pixel pitch =   6.40  × 1000  = 4.87 µm
1315


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Digilux pixel area

Pixel pitch = 4.87 µm

Pixel area = 4.87² = 23.72 µm²

Digilux Zoom pixel area

Pixel pitch = 4.87 µm

Pixel area = 4.87² = 23.72 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Digilux pixel density

Sensor resolution width = 1315 pixels
Sensor width = 0.64 cm

Pixel density = (1315 / 0.64)² / 1000000 = 4.22 MP/cm²

Digilux Zoom pixel density

Sensor resolution width = 1315 pixels
Sensor width = 0.64 cm

Pixel density = (1315 / 0.64)² / 1000000 = 4.22 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Digilux sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 1.30
r = 6.40/4.80 = 1.33
X =  1.30 × 1000000  = 989
1.33
Resolution horizontal: X × r = 989 × 1.33 = 1315
Resolution vertical: X = 989

Sensor resolution = 1315 x 989

Digilux Zoom sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 1.30
r = 6.40/4.80 = 1.33
X =  1.30 × 1000000  = 989
1.33
Resolution horizontal: X × r = 989 × 1.33 = 1315
Resolution vertical: X = 989

Sensor resolution = 1315 x 989


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Digilux crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

Digilux Zoom crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Digilux equivalent aperture

Crop factor = 5.41
Aperture = f3.2 - f8.0

35-mm equivalent aperture = (f3.2 - f8.0) × 5.41 = f17.3 - f43.3

Digilux Zoom equivalent aperture

Crop factor = 5.41
Aperture = f2.8 - f4.5

35-mm equivalent aperture = (f2.8 - f4.5) × 5.41 = f15.1 - f24.3

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.