Minolta DiMAGE 7i vs. Panasonic Lumix DMC-FS10

Comparison

change cameras »
DiMAGE 7i image
vs
Lumix DMC-FS10 image
Minolta DiMAGE 7i Panasonic Lumix DMC-FS10
check price » check price »
Megapixels
5.24
12.10
Max. image resolution
2560 x 1920
4000 x 3000

Sensor

Sensor type
CCD
CCD
Sensor size
2/3" (~ 8.8 x 6.6 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor resolution
2640 x 1985
4011 x 3016
Diagonal
11.00 mm
7.60 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
2.1 : 1
(ratio)
Minolta DiMAGE 7i Panasonic Lumix DMC-FS10
Surface area:
58.08 mm² vs 27.72 mm²
Difference: 30.36 mm² (110%)
DiMAGE 7i sensor is approx. 2.1x bigger than FS10 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 8 years between Minolta DiMAGE 7i (2002) and Panasonic FS10 (2010). Eight years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
3.33 µm
1.52 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.81 µm (119%)
Pixel pitch of DiMAGE 7i is approx. 119% higher than pixel pitch of FS10.
Pixel area
11.09 µm²
2.31 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.78 µm² (380%)
A pixel on Minolta DiMAGE 7i sensor is approx. 380% bigger than a pixel on Panasonic FS10.
Pixel density
9 MP/cm²
43.52 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 34.52 µm (384%)
Panasonic FS10 has approx. 384% higher pixel density than Minolta DiMAGE 7i.
To learn about the accuracy of these numbers, click here.



Specs

Minolta DiMAGE 7i
Panasonic FS10
Crop factor
3.93
5.69
Total megapixels
12.70
Effective megapixels
12.10
Optical zoom
7.1x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800
Auto, 80, 100, 200, 400, 800, 1600 - 6400
RAW
Manual focus
Normal focus range
50 cm
50 cm
Macro focus range
25 cm
5 cm
Focal length (35mm equiv.)
28 - 200 mm
28 - 140 mm
Aperture priority
Yes
No
Max. aperture
f2.8 - f3.5
f2.8 - f6.9
Max. aperture (35mm equiv.)
f11 - f13.8
f15.9 - f39.3
Metering
Centre weighted, Matrix, Spot
Intelligent Multiple
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
No
Min. shutter speed
Bulb+30 sec
60 sec
Max. shutter speed
1/4000 sec
1/1600 sec
Built-in flash
External flash
Viewfinder
Electronic
None
White balance presets
7
6
Screen size
1.8"
2.7"
Screen resolution
122,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
CompactFlash type I, CompactFlash type II, Microdrive
SDHC, Secure Digital
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA (2) batteries (NiMH recommended)
Lithium-Ion rechargeable battery
Weight
650 g
163 g
Dimensions
117 x 91 x 113 mm
98.4 x 55.2 x 23.4 mm
Year
2002
2010




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Minolta DiMAGE 7i diagonal

The diagonal of DiMAGE 7i sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of that value - 11 mm. If you want to know why, see sensor sizes.

w = 8.80 mm
h = 6.60 mm
Diagonal =  8.80² + 6.60²   = 11.00 mm

Panasonic FS10 diagonal

The diagonal of FS10 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

DiMAGE 7i sensor area

Width = 8.80 mm
Height = 6.60 mm

Surface area = 8.80 × 6.60 = 58.08 mm²

FS10 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

DiMAGE 7i pixel pitch

Sensor width = 8.80 mm
Sensor resolution width = 2640 pixels
Pixel pitch =   8.80  × 1000  = 3.33 µm
2640

FS10 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4011 pixels
Pixel pitch =   6.08  × 1000  = 1.52 µm
4011


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

DiMAGE 7i pixel area

Pixel pitch = 3.33 µm

Pixel area = 3.33² = 11.09 µm²

FS10 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

DiMAGE 7i pixel density

Sensor resolution width = 2640 pixels
Sensor width = 0.88 cm

Pixel density = (2640 / 0.88)² / 1000000 = 9 MP/cm²

FS10 pixel density

Sensor resolution width = 4011 pixels
Sensor width = 0.608 cm

Pixel density = (4011 / 0.608)² / 1000000 = 43.52 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

DiMAGE 7i sensor resolution

Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 5.24
r = 8.80/6.60 = 1.33
X =  5.24 × 1000000  = 1985
1.33
Resolution horizontal: X × r = 1985 × 1.33 = 2640
Resolution vertical: X = 1985

Sensor resolution = 2640 x 1985

FS10 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.10
r = 6.08/4.56 = 1.33
X =  12.10 × 1000000  = 3016
1.33
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016

Sensor resolution = 4011 x 3016


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


DiMAGE 7i crop factor

Sensor diagonal in mm = 11.00 mm
Crop factor =   43.27  = 3.93
11.00

FS10 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

DiMAGE 7i equivalent aperture

Crop factor = 3.93
Aperture = f2.8 - f3.5

35-mm equivalent aperture = (f2.8 - f3.5) × 3.93 = f11 - f13.8

FS10 equivalent aperture

Crop factor = 5.69
Aperture = f2.8 - f6.9

35-mm equivalent aperture = (f2.8 - f6.9) × 5.69 = f15.9 - f39.3

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.