Nikon Coolpix L31 vs. Nikon Coolpix L20
Comparison
change cameras » | |||||
|
vs |
|
|||
Nikon Coolpix L31 | Nikon Coolpix L20 | ||||
check price » | check price » |
Megapixels
16.10
10.00
Max. image resolution
4608 x 3456
3648 x 2736
Sensor
Sensor type
CMOS
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.03 | : | 1 |
(ratio) | ||
Nikon Coolpix L31 | Nikon Coolpix L20 |
Surface area:
28.46 mm² | vs | 27.72 mm² |
Difference: 0.74 mm² (3%)
L31 sensor is slightly bigger than L20 sensor (only 3% difference).
Note: You are comparing sensors of very different generations.
There is a gap of 6 years between Nikon L31 (2015) and Nikon L20 (2009).
Six years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.02 µm² (58%)
A pixel on Nikon L20 sensor is approx. 58% bigger than a pixel on Nikon L31.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Nikon L31
Nikon L20
Total megapixels
16.44
10.30
Effective megapixels
16.10
10.00
Optical zoom
5x
3.6x
Digital zoom
Yes
Yes
ISO sensitivity
80–1600
Auto, (64 - 1600)
RAW
Manual focus
Normal focus range
50 cm
30 cm
Macro focus range
10 cm
5 cm
Focal length (35mm equiv.)
26 - 130 mm
38 - 136 mm
Aperture priority
No
No
Max. aperture
f3.2 - f6.5
f3.1 - f6.7
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
8 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
5
Screen size
2.7"
3"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
1280x720 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC card, Internal
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2 x AA-size batteries
AA (2) batteries (Alkaline, NiMH, Oxyride or Lithium)
Weight
160 g
135 g
Dimensions
96.4 x 59.4 x 28.9 mm
61 x 97 x 29 mm
Year
2015
2009
Choose cameras to compare
Popular comparisons:
- Nikon Coolpix L31 vs. Nikon Coolpix L29
- Nikon Coolpix L31 vs. Nikon Coolpix A10
- Nikon Coolpix L31 vs. Nikon Coolpix S2800
- Nikon Coolpix L31 vs. Nikon Coolpix L27
- Nikon Coolpix L31 vs. Nikon Coolpix L30
- Nikon Coolpix L31 vs. Sony Cyber-shot DSC-W800
- Nikon Coolpix L31 vs. Canon PowerShot ELPH 160
- Nikon Coolpix L31 vs. Nikon Coolpix L32
- Nikon Coolpix L31 vs. Nikon Coolpix L23
- Nikon Coolpix L31 vs. Nikon Coolpix L20
- Nikon Coolpix L31 vs. Nikon Coolpix L28
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Nikon L31 diagonal
The diagonal of L31 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Nikon L20 diagonal
The diagonal of L20 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
L31 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
L20 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
L31 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4627 pixels
Sensor resolution width = 4627 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.33 µm |
4627 |
L20 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 3647 pixels
Sensor resolution width = 3647 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.67 µm |
3647 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
L31 pixel area
Pixel pitch = 1.33 µm
Pixel area = 1.33² = 1.77 µm²
Pixel area = 1.33² = 1.77 µm²
L20 pixel area
Pixel pitch = 1.67 µm
Pixel area = 1.67² = 2.79 µm²
Pixel area = 1.67² = 2.79 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
L31 pixel density
Sensor resolution width = 4627 pixels
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
L20 pixel density
Sensor resolution width = 3647 pixels
Sensor width = 0.608 cm
Pixel density = (3647 / 0.608)² / 1000000 = 35.98 MP/cm²
Sensor width = 0.608 cm
Pixel density = (3647 / 0.608)² / 1000000 = 35.98 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
L31 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.10
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Sensor height = 4.62 mm
Effective megapixels = 16.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
L20 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 10.00
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Sensor height = 4.56 mm
Effective megapixels = 10.00
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
L31 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
L20 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
L31 equivalent aperture
Crop factor = 5.62
Aperture = f3.2 - f6.5
35-mm equivalent aperture = (f3.2 - f6.5) × 5.62 = f18 - f36.5
Aperture = f3.2 - f6.5
35-mm equivalent aperture = (f3.2 - f6.5) × 5.62 = f18 - f36.5
L20 equivalent aperture
Crop factor = 5.69
Aperture = f3.1 - f6.7
35-mm equivalent aperture = (f3.1 - f6.7) × 5.69 = f17.6 - f38.1
Aperture = f3.1 - f6.7
35-mm equivalent aperture = (f3.1 - f6.7) × 5.69 = f17.6 - f38.1
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.