Nikon Coolpix S2500 vs. Sigma DP1

Comparison

change cameras »
Coolpix S2500 image
vs
DP1 image
Nikon Coolpix S2500 Sigma DP1
check price » check price »
Megapixels
12.39
4.70
Max. image resolution
4000 x 3000
2640 x 1760 x 3
Note: Sigma DP1 uses Foveon X3 image sensor, which is a new type of sensor that has 3 layers of photoelements stacked together in 1 pixel location. Traditional CCD/CMOS sensors have 1 pixel for 1 color, whereas Foveon sensor captures all 3 colors (blue, green, and red) at every pixel.

Sensor

Sensor type
CCD
Foveon
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
20.7 x 13.8 mm
Sensor resolution
4059 x 3052
2655 x 1770
Diagonal
7.70 mm
24.88 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 10.04
(ratio)
Nikon Coolpix S2500 Sigma DP1
Surface area:
28.46 mm² vs 285.66 mm²
Difference: 257.2 mm² (904%)
DP1 sensor is approx. 10.04x bigger than S2500 sensor.
Note: You are comparing cameras of different generations. There is a 5 year gap between Nikon S2500 (2011) and Sigma DP1 (2006). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.52 µm
7.8 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 6.28 µm (413%)
Pixel pitch of DP1 is approx. 413% higher than pixel pitch of S2500.
Pixel area
2.31 µm²
60.84 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 58.53 µm² (2534%)
A pixel on Sigma DP1 sensor is approx. 2534% bigger than a pixel on Nikon S2500.
Pixel density
43.42 MP/cm²
1.65 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 41.77 µm (2532%)
Nikon S2500 has approx. 2532% higher pixel density than Sigma DP1.
To learn about the accuracy of these numbers, click here.



Specs

Nikon S2500
Sigma DP1
Crop factor
5.62
1.74
Total megapixels
4.70
Effective megapixels
4.70
Optical zoom
Yes
1x
Digital zoom
Yes
No
ISO sensitivity
Auto, 80 - 3200
Auto, 100, 200, 400, 800
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
8 cm
Focal length (35mm equiv.)
27 - 108 mm
28 mm
Aperture priority
No
Yes
Max. aperture
f3.2 - f5.9
Max. aperture (35mm equiv.)
f18 - f33.2
n/a
Metering
Centre weighted, Matrix, Multi-segment
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
30 sec
Max. shutter speed
1/4000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
Screen size
2.7"
2.5"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, SDXC, Secure Digital
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Li-Ion
Lithium-Ion rechargeable battery
Weight
117 g
270 g
Dimensions
93.1 x 57.1 x 20.0 mm
113 x 60 x 50 mm
Year
2011
2006




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nikon S2500 diagonal

The diagonal of S2500 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Sigma DP1 diagonal

w = 20.70 mm
h = 13.80 mm
Diagonal =  20.70² + 13.80²   = 24.88 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

S2500 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

DP1 sensor area

Width = 20.70 mm
Height = 13.80 mm

Surface area = 20.70 × 13.80 = 285.66 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

S2500 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4059 pixels
Pixel pitch =   6.16  × 1000  = 1.52 µm
4059

DP1 pixel pitch

Sensor width = 20.70 mm
Sensor resolution width = 2655 pixels
Pixel pitch =   20.70  × 1000  = 7.8 µm
2655


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

S2500 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²

DP1 pixel area

Pixel pitch = 7.8 µm

Pixel area = 7.8² = 60.84 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

S2500 pixel density

Sensor resolution width = 4059 pixels
Sensor width = 0.616 cm

Pixel density = (4059 / 0.616)² / 1000000 = 43.42 MP/cm²

DP1 pixel density

Sensor resolution width = 2655 pixels
Sensor width = 2.07 cm

Pixel density = (2655 / 2.07)² / 1000000 = 1.65 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

S2500 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.39
r = 6.16/4.62 = 1.33
X =  12.39 × 1000000  = 3052
1.33
Resolution horizontal: X × r = 3052 × 1.33 = 4059
Resolution vertical: X = 3052

Sensor resolution = 4059 x 3052

DP1 sensor resolution

Sensor width = 20.70 mm
Sensor height = 13.80 mm
Effective megapixels = 4.70
r = 20.70/13.80 = 1.5
X =  4.70 × 1000000  = 1770
1.5
Resolution horizontal: X × r = 1770 × 1.5 = 2655
Resolution vertical: X = 1770

Sensor resolution = 2655 x 1770


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


S2500 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

DP1 crop factor

Sensor diagonal in mm = 24.88 mm
Crop factor =   43.27  = 1.74
24.88

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

S2500 equivalent aperture

Crop factor = 5.62
Aperture = f3.2 - f5.9

35-mm equivalent aperture = (f3.2 - f5.9) × 5.62 = f18 - f33.2

DP1 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Sigma DP1, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Sigma DP1 is 1.74

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.