Olympus Air A01 vs. Olympus Tough TG-4
Comparison
change cameras » | |||||
|
vs |
|
|||
Olympus Air A01 | Olympus Tough TG-4 | ||||
check price » | check price » |
Megapixels
16.05
16.00
Max. image resolution
4608 x 3456
4608 x 3456
Sensor
Sensor type
CMOS
CMOS
Sensor size
Four Thirds (17.3 x 13 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
7.9 | : | 1 |
(ratio) | ||
Olympus Air A01 | Olympus Tough TG-4 |
Surface area:
224.90 mm² | vs | 28.46 mm² |
Difference: 196.44 mm² (690%)
Air A01 sensor is approx. 7.9x bigger than TG-4 sensor.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 12.19 µm² (677%)
A pixel on Olympus Air A01 sensor is approx. 677% bigger than a pixel on Olympus TG-4.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Olympus Air A01
Olympus TG-4
Total megapixels
17.20
16.80
Effective megapixels
16.05
16.00
Optical zoom
4x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 200-12800
Auto, 100, 200, 400, 800, 1600, 3200, 6400
RAW
Manual focus
Normal focus range
10 cm
Macro focus range
1 cm
Focal length (35mm equiv.)
25 - 100 mm
Aperture priority
Yes
Yes
Max. aperture
f2.0 - f4.9
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV, 1 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
No
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/16000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
5
Screen size
3"
Screen resolution
460,000 dots
Video capture
Max. video resolution
1920x1080 (30p)
1920x1080 (30p)
Storage types
microSD/SDHC/SDXC/UHS-I
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Built-in Li-ion battery
LI-92B Lithium-ion Battery
Weight
147 g
247 g
Dimensions
56.9 x 57.1 x 43.6 mm
111.5 x 65.9 x 31.2 mm
Year
2015
2015
Choose cameras to compare
Popular comparisons:
- Olympus Air A01 vs. Sony Cyber-shot DSC-QX100
- Olympus Air A01 vs. Sony Cyber-shot DSC-QX10
- Olympus Air A01 vs. Sony Cyber-shot DSC-QX1
- Olympus Air A01 vs. Sony Cyber-shot DSC-QX30
- Olympus Air A01 vs. Canon EOS M6
- Olympus Air A01 vs. Kodak PixPro S-1
- Olympus Air A01 vs. Olympus OM-D E-M5 Mark II
- Olympus Air A01 vs. Canon EOS Rebel T6
- Olympus Air A01 vs. Pentax K-1
- Olympus Air A01 vs. Nikon D1
- Olympus Air A01 vs. Nikon DL18-50
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Olympus Air A01 diagonal
w = 17.30 mm
h = 13.00 mm
h = 13.00 mm
Diagonal = √ | 17.30² + 13.00² | = 21.64 mm |
Olympus TG-4 diagonal
The diagonal of TG-4 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
Air A01 sensor area
Width = 17.30 mm
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
TG-4 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
Air A01 pixel pitch
Sensor width = 17.30 mm
Sensor resolution width = 4620 pixels
Sensor resolution width = 4620 pixels
Pixel pitch = | 17.30 | × 1000 | = 3.74 µm |
4620 |
TG-4 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.34 µm |
4612 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
Air A01 pixel area
Pixel pitch = 3.74 µm
Pixel area = 3.74² = 13.99 µm²
Pixel area = 3.74² = 13.99 µm²
TG-4 pixel area
Pixel pitch = 1.34 µm
Pixel area = 1.34² = 1.8 µm²
Pixel area = 1.34² = 1.8 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
Air A01 pixel density
Sensor resolution width = 4620 pixels
Sensor width = 1.73 cm
Pixel density = (4620 / 1.73)² / 1000000 = 7.13 MP/cm²
Sensor width = 1.73 cm
Pixel density = (4620 / 1.73)² / 1000000 = 7.13 MP/cm²
TG-4 pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
Air A01 sensor resolution
Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 16.05
Resolution horizontal: X × r = 3474 × 1.33 = 4620
Resolution vertical: X = 3474
Sensor resolution = 4620 x 3474
Sensor height = 13.00 mm
Effective megapixels = 16.05
r = 17.30/13.00 = 1.33 |
|
Resolution vertical: X = 3474
Sensor resolution = 4620 x 3474
TG-4 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
Air A01 crop factor
Sensor diagonal in mm = 21.64 mm
Crop factor = | 43.27 | = 2 |
21.64 |
TG-4 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
Air A01 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Olympus Air A01, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Olympus Air A01 is 2
Crop factor for Olympus Air A01 is 2
TG-4 equivalent aperture
Crop factor = 5.62
Aperture = f2.0 - f4.9
35-mm equivalent aperture = (f2.0 - f4.9) × 5.62 = f11.2 - f27.5
Aperture = f2.0 - f4.9
35-mm equivalent aperture = (f2.0 - f4.9) × 5.62 = f11.2 - f27.5
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.