Olympus E-100 RS vs. Canon PowerShot S60

Comparison

change cameras »
E-100 RS image
vs
PowerShot S60 image
Olympus E-100 RS Canon PowerShot S60
check price » check price »
Megapixels
1.30
5.00
Max. image resolution
1368 x 1024
2592 x 1944

Sensor

Sensor type
CCD
CCD
Sensor size
1/2" (~ 6.4 x 4.8 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
1315 x 989
2579 x 1939
Diagonal
8.00 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.23
(ratio)
Olympus E-100 RS Canon PowerShot S60
Surface area:
30.72 mm² vs 37.90 mm²
Difference: 7.18 mm² (23%)
S60 sensor is approx. 1.23x bigger than E-100 RS sensor.
Note: You are comparing cameras of different generations. There is a 4 year gap between Olympus E-100 RS (2000) and Canon S60 (2004). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
4.87 µm
2.76 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.11 µm (76%)
Pixel pitch of E-100 RS is approx. 76% higher than pixel pitch of S60.
Pixel area
23.72 µm²
7.62 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 16.1 µm² (211%)
A pixel on Olympus E-100 RS sensor is approx. 211% bigger than a pixel on Canon S60.
Pixel density
4.22 MP/cm²
13.16 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 8.94 µm (212%)
Canon S60 has approx. 212% higher pixel density than Olympus E-100 RS.
To learn about the accuracy of these numbers, click here.



Specs

Olympus E-100 RS
Canon S60
Crop factor
5.41
4.87
Total megapixels
1.50
5.20
Effective megapixels
1.30
5.00
Optical zoom
10x
3.6x
Digital zoom
Yes
Yes
ISO sensitivity
100, 200, 400
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
60 cm
50 cm
Macro focus range
10 cm
4 cm
Focal length (35mm equiv.)
38 - 380 mm
28 - 100 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f8.0
f2.8 - f5.3
Max. aperture (35mm equiv.)
f15.1 - f43.3
f13.6 - f25.8
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
2 sec
15 sec
Max. shutter speed
1/10000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Electronic
Optical (tunnel)
White balance presets
5
7
Screen size
1.8"
1.8"
Screen resolution
114,000 dots
118,000 dots
Video capture
Max. video resolution
Storage types
SmartMedia
Compact Flash (Type I or II)
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
AA NiMH (4) batteries (supplied)
Canon Lithium-Ion
Weight
603 g
300 g
Dimensions
108 x 83 x 142 mm
114 x 57 x 39 mm
Year
2000
2004




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Olympus E-100 RS diagonal

The diagonal of E-100 RS sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm

Canon S60 diagonal

The diagonal of S60 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

E-100 RS sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²

S60 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

E-100 RS pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 1315 pixels
Pixel pitch =   6.40  × 1000  = 4.87 µm
1315

S60 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2579 pixels
Pixel pitch =   7.11  × 1000  = 2.76 µm
2579


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

E-100 RS pixel area

Pixel pitch = 4.87 µm

Pixel area = 4.87² = 23.72 µm²

S60 pixel area

Pixel pitch = 2.76 µm

Pixel area = 2.76² = 7.62 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

E-100 RS pixel density

Sensor resolution width = 1315 pixels
Sensor width = 0.64 cm

Pixel density = (1315 / 0.64)² / 1000000 = 4.22 MP/cm²

S60 pixel density

Sensor resolution width = 2579 pixels
Sensor width = 0.711 cm

Pixel density = (2579 / 0.711)² / 1000000 = 13.16 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

E-100 RS sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 1.30
r = 6.40/4.80 = 1.33
X =  1.30 × 1000000  = 989
1.33
Resolution horizontal: X × r = 989 × 1.33 = 1315
Resolution vertical: X = 989

Sensor resolution = 1315 x 989

S60 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 5.00
r = 7.11/5.33 = 1.33
X =  5.00 × 1000000  = 1939
1.33
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939

Sensor resolution = 2579 x 1939


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


E-100 RS crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

S60 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

E-100 RS equivalent aperture

Crop factor = 5.41
Aperture = f2.8 - f8.0

35-mm equivalent aperture = (f2.8 - f8.0) × 5.41 = f15.1 - f43.3

S60 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f5.3

35-mm equivalent aperture = (f2.8 - f5.3) × 4.87 = f13.6 - f25.8

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.