Olympus Stylus 760 vs. Olympus Stylus 810

Comparison

change cameras »
Stylus 760 image
vs
Stylus 810 image
Olympus Stylus 760 Olympus Stylus 810
check price » check price »
Megapixels
7.10
8.00
Max. image resolution
3072 x 2304
3264 x 2488

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
3072 x 2310
3262 x 2453
Diagonal
7.70 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.33
(ratio)
Olympus Stylus 760 Olympus Stylus 810
Surface area:
28.46 mm² vs 37.90 mm²
Difference: 9.44 mm² (33%)
810 sensor is approx. 1.33x bigger than 760 sensor.
Pixel pitch
2.01 µm
2.18 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.17 µm (8%)
Pixel pitch of 810 is approx. 8% higher than pixel pitch of 760.
Pixel area
4.04 µm²
4.75 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.71 µm² (18%)
A pixel on Olympus 810 sensor is approx. 18% bigger than a pixel on Olympus 760.
Pixel density
24.87 MP/cm²
21.05 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 3.82 µm (18%)
Olympus 760 has approx. 18% higher pixel density than Olympus 810.
To learn about the accuracy of these numbers, click here.



Specs

Olympus 760
Olympus 810
Crop factor
5.62
4.87
Total megapixels
7.40
8.30
Effective megapixels
7.10
8.00
Optical zoom
3x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, (1600 with limitations)
Auto, 64, 100, 200, 400, (800, 1600, 3200 with limitations)
RAW
Manual focus
Normal focus range
60 cm
60 cm
Macro focus range
8 cm
10 cm
Focal length (35mm equiv.)
37 - 111 mm
35 - 105 mm
Aperture priority
No
No
Max. aperture
f3.4 - f5.7
f2.8 - f4.7
Max. aperture (35mm equiv.)
f19.1 - f32
f13.6 - f22.9
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/2000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
5
Screen size
2.5"
2.5"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
xD Picture Card, Internal
xD Picture Card, Internal
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable
Lithium-Ion rechargeable
Weight
160 g
165 g
Dimensions
99 x 54 x 24 mm
97 x 56 x 23 mm
Year
2007
2006




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Olympus 760 diagonal

The diagonal of 760 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Olympus 810 diagonal

The diagonal of 810 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

760 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

810 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

760 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 3072 pixels
Pixel pitch =   6.16  × 1000  = 2.01 µm
3072

810 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 3262 pixels
Pixel pitch =   7.11  × 1000  = 2.18 µm
3262


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

760 pixel area

Pixel pitch = 2.01 µm

Pixel area = 2.01² = 4.04 µm²

810 pixel area

Pixel pitch = 2.18 µm

Pixel area = 2.18² = 4.75 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

760 pixel density

Sensor resolution width = 3072 pixels
Sensor width = 0.616 cm

Pixel density = (3072 / 0.616)² / 1000000 = 24.87 MP/cm²

810 pixel density

Sensor resolution width = 3262 pixels
Sensor width = 0.711 cm

Pixel density = (3262 / 0.711)² / 1000000 = 21.05 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

760 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 7.10
r = 6.16/4.62 = 1.33
X =  7.10 × 1000000  = 2310
1.33
Resolution horizontal: X × r = 2310 × 1.33 = 3072
Resolution vertical: X = 2310

Sensor resolution = 3072 x 2310

810 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 8.00
r = 7.11/5.33 = 1.33
X =  8.00 × 1000000  = 2453
1.33
Resolution horizontal: X × r = 2453 × 1.33 = 3262
Resolution vertical: X = 2453

Sensor resolution = 3262 x 2453


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


760 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

810 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

760 equivalent aperture

Crop factor = 5.62
Aperture = f3.4 - f5.7

35-mm equivalent aperture = (f3.4 - f5.7) × 5.62 = f19.1 - f32

810 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.7

35-mm equivalent aperture = (f2.8 - f4.7) × 4.87 = f13.6 - f22.9

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.