Panasonic Lumix DC-G100 vs. Sony ZV-1

Comparison

change cameras »
Lumix DC-G100 image
vs
ZV-1 image
Panasonic Lumix DC-G100 Sony ZV-1
check price » check price »
Megapixels
20.30
20.10
Max. image resolution
5184 x 3888
5472 x 3648

Sensor

Sensor type
CMOS
CMOS
Sensor size
Four Thirds (17.3 x 13 mm)
13.2 x 8.8 mm
Sensor resolution
5196 x 3907
5492 x 3661
Diagonal
21.64 mm
15.86 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.94 : 1
(ratio)
Panasonic Lumix DC-G100 Sony ZV-1
Surface area:
224.90 mm² vs 116.16 mm²
Difference: 108.74 mm² (94%)
Lumix DC-G100 sensor is approx. 1.94x bigger than ZV-1 sensor.
Pixel pitch
3.33 µm
2.4 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.93 µm (39%)
Pixel pitch of Lumix DC-G100 is approx. 39% higher than pixel pitch of ZV-1.
Pixel area
11.09 µm²
5.76 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 5.33 µm² (93%)
A pixel on Panasonic Lumix DC-G100 sensor is approx. 93% bigger than a pixel on Sony ZV-1.
Pixel density
9.02 MP/cm²
17.31 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 8.29 µm (92%)
Sony ZV-1 has approx. 92% higher pixel density than Panasonic Lumix DC-G100.
To learn about the accuracy of these numbers, click here.



Specs

Panasonic Lumix DC-G100
Sony ZV-1
Crop factor
2
2.73
Total megapixels
21.77
21.00
Effective megapixels
20.30
20.10
Optical zoom
2.9x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 200-25600 (extends down to 100)
Auto, 125-12800
RAW
Manual focus
Normal focus range
5 cm
Macro focus range
5 cm
Focal length (35mm equiv.)
24 - 70 mm
Aperture priority
Yes
Yes
Max. aperture
f1.8 - f2.8
Max. aperture (35mm equiv.)
n/a
f4.9 - f7.6
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
60 sec
30 sec
Max. shutter speed
1/16000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Electronic
None
White balance presets
5
9
Screen size
3"
3"
Screen resolution
1,840,000 dots
921,600 dots
Video capture
Max. video resolution
3840x2160 (30p/​24p)
3840x2160 (30p/25p/24p)
Storage types
SD/SDHC/SDXC
SD/ SDHC/SDXC/MS Pro Duo/ Pro-HG Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
BLG10 lithium-ion battery
NP-BX1 lithium-ion battery
Weight
352 g
294 g
Dimensions
115.6 x 82.5 x 54.2 mm
105.5 x 60 x 43.5 mm
Year
2020
2020




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Panasonic Lumix DC-G100 diagonal

w = 17.30 mm
h = 13.00 mm
Diagonal =  17.30² + 13.00²   = 21.64 mm

Sony ZV-1 diagonal

w = 13.20 mm
h = 8.80 mm
Diagonal =  13.20² + 8.80²   = 15.86 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Lumix DC-G100 sensor area

Width = 17.30 mm
Height = 13.00 mm

Surface area = 17.30 × 13.00 = 224.90 mm²

ZV-1 sensor area

Width = 13.20 mm
Height = 8.80 mm

Surface area = 13.20 × 8.80 = 116.16 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Lumix DC-G100 pixel pitch

Sensor width = 17.30 mm
Sensor resolution width = 5196 pixels
Pixel pitch =   17.30  × 1000  = 3.33 µm
5196

ZV-1 pixel pitch

Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Pixel pitch =   13.20  × 1000  = 2.4 µm
5492


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Lumix DC-G100 pixel area

Pixel pitch = 3.33 µm

Pixel area = 3.33² = 11.09 µm²

ZV-1 pixel area

Pixel pitch = 2.4 µm

Pixel area = 2.4² = 5.76 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Lumix DC-G100 pixel density

Sensor resolution width = 5196 pixels
Sensor width = 1.73 cm

Pixel density = (5196 / 1.73)² / 1000000 = 9.02 MP/cm²

ZV-1 pixel density

Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm

Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Lumix DC-G100 sensor resolution

Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 20.30
r = 17.30/13.00 = 1.33
X =  20.30 × 1000000  = 3907
1.33
Resolution horizontal: X × r = 3907 × 1.33 = 5196
Resolution vertical: X = 3907

Sensor resolution = 5196 x 3907

ZV-1 sensor resolution

Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5
X =  20.10 × 1000000  = 3661
1.5
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661

Sensor resolution = 5492 x 3661


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Lumix DC-G100 crop factor

Sensor diagonal in mm = 21.64 mm
Crop factor =   43.27  = 2
21.64

ZV-1 crop factor

Sensor diagonal in mm = 15.86 mm
Crop factor =   43.27  = 2.73
15.86

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Lumix DC-G100 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Panasonic Lumix DC-G100, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Panasonic Lumix DC-G100 is 2

ZV-1 equivalent aperture

Crop factor = 2.73
Aperture = f1.8 - f2.8

35-mm equivalent aperture = (f1.8 - f2.8) × 2.73 = f4.9 - f7.6

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.