Panasonic Lumix DC-GX800 vs. Panasonic Lumix DMC-TZ100

Comparison

change cameras »
Lumix DC-GX800 image
vs
Lumix DMC-TZ100 image
Panasonic Lumix DC-GX800 Panasonic Lumix DMC-TZ100
check price » check price »
Megapixels
16.00
20.10
Max. image resolution
4592 x 3448
5472 x 3648

Sensor

Sensor type
CMOS
CMOS
Sensor size
Four Thirds (17.3 x 13 mm)
13.2 x 8.8 mm
Sensor resolution
4612 x 3468
5492 x 3661
Diagonal
21.64 mm
15.86 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.94 : 1
(ratio)
Panasonic Lumix DC-GX800 Panasonic Lumix DMC-TZ100
Surface area:
224.90 mm² vs 116.16 mm²
Difference: 108.74 mm² (94%)
Lumix DC-GX800 sensor is approx. 1.94x bigger than TZ100 sensor.
Pixel pitch
3.75 µm
2.4 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.35 µm (56%)
Pixel pitch of Lumix DC-GX800 is approx. 56% higher than pixel pitch of TZ100.
Pixel area
14.06 µm²
5.76 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.3 µm² (144%)
A pixel on Panasonic Lumix DC-GX800 sensor is approx. 144% bigger than a pixel on Panasonic TZ100.
Pixel density
7.11 MP/cm²
17.31 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 10.2 µm (143%)
Panasonic TZ100 has approx. 143% higher pixel density than Panasonic Lumix DC-GX800.
To learn about the accuracy of these numbers, click here.



Specs

Panasonic Lumix DC-GX800
Panasonic TZ100
Crop factor
2
2.73
Total megapixels
16.84
20.90
Effective megapixels
16.00
20.10
Optical zoom
10x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 200-25600 (extends to 100)
Auto, 125-12800 (extendable to 80-25600)
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
5 cm
Focal length (35mm equiv.)
25 - 250 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f5.9
Max. aperture (35mm equiv.)
n/a
f7.6 - f16.1
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
60 sec
60 sec
Max. shutter speed
1/16000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
5
5
Screen size
3"
3"
Screen resolution
1,040,000 dots
1,040,000 dots
Video capture
Max. video resolution
3840x2160 (30p/24p)
3840x2160 (30p/24p)
Storage types
microSD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Rechargeable Lithium-ion battery pack
Lithium-ion battery
Weight
269 g
310 g
Dimensions
106.5 x 64.6 x 33.3 mm
110.5 x 64.5 x 44.3 mm
Year
2017
2016




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Panasonic Lumix DC-GX800 diagonal

w = 17.30 mm
h = 13.00 mm
Diagonal =  17.30² + 13.00²   = 21.64 mm

Panasonic TZ100 diagonal

w = 13.20 mm
h = 8.80 mm
Diagonal =  13.20² + 8.80²   = 15.86 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Lumix DC-GX800 sensor area

Width = 17.30 mm
Height = 13.00 mm

Surface area = 17.30 × 13.00 = 224.90 mm²

TZ100 sensor area

Width = 13.20 mm
Height = 8.80 mm

Surface area = 13.20 × 8.80 = 116.16 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Lumix DC-GX800 pixel pitch

Sensor width = 17.30 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   17.30  × 1000  = 3.75 µm
4612

TZ100 pixel pitch

Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Pixel pitch =   13.20  × 1000  = 2.4 µm
5492


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Lumix DC-GX800 pixel area

Pixel pitch = 3.75 µm

Pixel area = 3.75² = 14.06 µm²

TZ100 pixel area

Pixel pitch = 2.4 µm

Pixel area = 2.4² = 5.76 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Lumix DC-GX800 pixel density

Sensor resolution width = 4612 pixels
Sensor width = 1.73 cm

Pixel density = (4612 / 1.73)² / 1000000 = 7.11 MP/cm²

TZ100 pixel density

Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm

Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Lumix DC-GX800 sensor resolution

Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 16.00
r = 17.30/13.00 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468

TZ100 sensor resolution

Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5
X =  20.10 × 1000000  = 3661
1.5
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661

Sensor resolution = 5492 x 3661


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Lumix DC-GX800 crop factor

Sensor diagonal in mm = 21.64 mm
Crop factor =   43.27  = 2
21.64

TZ100 crop factor

Sensor diagonal in mm = 15.86 mm
Crop factor =   43.27  = 2.73
15.86

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Lumix DC-GX800 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Panasonic Lumix DC-GX800, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Panasonic Lumix DC-GX800 is 2

TZ100 equivalent aperture

Crop factor = 2.73
Aperture = f2.8 - f5.9

35-mm equivalent aperture = (f2.8 - f5.9) × 2.73 = f7.6 - f16.1

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.