Panasonic Lumix DMC-ZS3 vs. Sony Alpha SLT-A37
Comparison
change cameras » | |||||
|
vs |
|
|||
Panasonic Lumix DMC-ZS3 | Sony Alpha SLT-A37 | ||||
check price » | check price » |
Megapixels
10.10
16.10
Max. image resolution
3648 x 2736
4912 x 3264
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
23.5 x 15.6 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 13.23 |
(ratio) | ||
Panasonic Lumix DMC-ZS3 | Sony Alpha SLT-A37 |
Surface area:
27.72 mm² | vs | 366.60 mm² |
Difference: 338.88 mm² (1223%)
Alpha SLT-A37 sensor is approx. 13.23x bigger than ZS3 sensor.
Note: You are comparing cameras of different generations.
There is a 3 year gap between Panasonic ZS3 (2009) and Sony Alpha SLT-A37 (2012).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 19.99 µm² (724%)
A pixel on Sony Alpha SLT-A37 sensor is approx. 724% bigger than a pixel on Panasonic ZS3.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Panasonic ZS3
Sony Alpha SLT-A37
Total megapixels
12.70
16.70
Effective megapixels
10.10
16.10
Optical zoom
12x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600 - 6400
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
25 - 300 mm
Aperture priority
No
Yes
Max. aperture
f3.3 - f4.9
Metering
Intelligent Multiple
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
60 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
5
6
Screen size
3"
2.6"
Screen resolution
460,000 dots
230,400 dots
Video capture
Max. video resolution
Storage types
MultiMedia, SDHC, Secure Digital
SD/SDHC/SDXC/Memory Stick Pro Duo/ Pro-HG Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable battery
Rechargeable NP-FW50 battery
Weight
229 g
506 g
Dimensions
103.3 x 59.6 x 32.8 mm
124 x 92 x 85 mm
Year
2009
2012
Choose cameras to compare
Popular comparisons:
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-LX7
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-ZS40
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-ZS30
- Panasonic Lumix DMC-ZS3 vs. Canon PowerShot SX260 HS
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-ZS15
- Panasonic Lumix DMC-ZS3 vs. Canon PowerShot S95
- Panasonic Lumix DMC-ZS3 vs. Sony Alpha SLT-A37
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-FZ200
- Panasonic Lumix DMC-ZS3 vs. Sony Cyber-shot DSC-RX100 II
- Panasonic Lumix DMC-ZS3 vs. Panasonic Lumix DMC-ZS25
- Panasonic Lumix DMC-ZS3 vs. Nikon Coolpix S6500
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Panasonic ZS3 diagonal
The diagonal of ZS3 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Sony Alpha SLT-A37 diagonal
w = 23.50 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √ | 23.50² + 15.60² | = 28.21 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
ZS3 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Alpha SLT-A37 sensor area
Width = 23.50 mm
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
ZS3 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 3665 pixels
Sensor resolution width = 3665 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.66 µm |
3665 |
Alpha SLT-A37 pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 4930 pixels
Sensor resolution width = 4930 pixels
Pixel pitch = | 23.50 | × 1000 | = 4.77 µm |
4930 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
ZS3 pixel area
Pixel pitch = 1.66 µm
Pixel area = 1.66² = 2.76 µm²
Pixel area = 1.66² = 2.76 µm²
Alpha SLT-A37 pixel area
Pixel pitch = 4.77 µm
Pixel area = 4.77² = 22.75 µm²
Pixel area = 4.77² = 22.75 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
ZS3 pixel density
Sensor resolution width = 3665 pixels
Sensor width = 0.608 cm
Pixel density = (3665 / 0.608)² / 1000000 = 36.34 MP/cm²
Sensor width = 0.608 cm
Pixel density = (3665 / 0.608)² / 1000000 = 36.34 MP/cm²
Alpha SLT-A37 pixel density
Sensor resolution width = 4930 pixels
Sensor width = 2.35 cm
Pixel density = (4930 / 2.35)² / 1000000 = 4.4 MP/cm²
Sensor width = 2.35 cm
Pixel density = (4930 / 2.35)² / 1000000 = 4.4 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
ZS3 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 10.10
Resolution horizontal: X × r = 2756 × 1.33 = 3665
Resolution vertical: X = 2756
Sensor resolution = 3665 x 2756
Sensor height = 4.56 mm
Effective megapixels = 10.10
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 2756
Sensor resolution = 3665 x 2756
Alpha SLT-A37 sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 16.10
Resolution horizontal: X × r = 3265 × 1.51 = 4930
Resolution vertical: X = 3265
Sensor resolution = 4930 x 3265
Sensor height = 15.60 mm
Effective megapixels = 16.10
r = 23.50/15.60 = 1.51 |
|
Resolution vertical: X = 3265
Sensor resolution = 4930 x 3265
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
ZS3 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
Alpha SLT-A37 crop factor
Sensor diagonal in mm = 28.21 mm
Crop factor = | 43.27 | = 1.53 |
28.21 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
ZS3 equivalent aperture
Crop factor = 5.69
Aperture = f3.3 - f4.9
35-mm equivalent aperture = (f3.3 - f4.9) × 5.69 = f18.8 - f27.9
Aperture = f3.3 - f4.9
35-mm equivalent aperture = (f3.3 - f4.9) × 5.69 = f18.8 - f27.9
Alpha SLT-A37 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Sony Alpha SLT-A37, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Sony Alpha SLT-A37 is 1.53
Crop factor for Sony Alpha SLT-A37 is 1.53
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.