Pentax Optio S40 vs. Pentax Optio I-10
Comparison
change cameras » | |||||
|
vs |
|
|||
Pentax Optio S40 | Pentax Optio I-10 | ||||
check price » | check price » |
Megapixels
4.00
12.10
Max. image resolution
2304 x 1728
4000 x 3000
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.15 |
(ratio) | ||
Pentax Optio S40 | Pentax Optio I-10 |
Surface area:
24.84 mm² | vs | 28.46 mm² |
Difference: 3.62 mm² (15%)
I-10 sensor is approx. 1.15x bigger than S40 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 6 years between Pentax S40 (2004) and Pentax I-10 (2010).
Six years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.83 µm² (162%)
A pixel on Pentax S40 sensor is approx. 162% bigger than a pixel on Pentax I-10.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Pentax S40
Pentax I-10
Total megapixels
4.20
12.40
Effective megapixels
4.00
12.10
Optical zoom
3x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 80 - 6400
RAW
Manual focus
Normal focus range
40 cm
40 cm
Macro focus range
6 cm
10 cm
Focal length (35mm equiv.)
35 - 105 mm
28 - 140 mm
Aperture priority
No
No
Max. aperture
f2.6 - f4.8
f3.5 - f5.9
Metering
Centre weighted, Multi-segment, Spot
Centre weighted, Multi-segment, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
None
White balance presets
6
6
Screen size
1.6"
2.7"
Screen resolution
85,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
SDHC, Secure Digital
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA (2) batteries (NiMH recommended)
Lithium-Ion D-LI92 rechargeable battery
Weight
125 g
132 g
Dimensions
89 x 58.5 x 25.5 mm
101 x 65 x 28 mm
Year
2004
2010
Choose cameras to compare
Popular comparisons:
- Pentax Optio S40 vs. Pentax Optio S45
- Pentax Optio S40 vs. HP Photosmart 935
- Pentax Optio S40 vs. HP Photosmart 735
- Pentax Optio S40 vs. Fujifilm FinePix A500 Zoom
- Pentax Optio S40 vs. HP Photosmart 635
- Pentax Optio S40 vs. Pentax Optio L50
- Pentax Optio S40 vs. Pentax Optio E90
- Pentax Optio S40 vs. Pentax Optio I-10
- Canon EOS 200D vs. Canon EOS 750D
- Canon EOS 1300D vs. Canon EOS 700D
- Canon EOS 600D vs. Canon EOS 1300D
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Pentax S40 diagonal
The diagonal of S40 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Pentax I-10 diagonal
The diagonal of I-10 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
S40 sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
I-10 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
S40 pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2306 pixels
Sensor resolution width = 2306 pixels
Pixel pitch = | 5.75 | × 1000 | = 2.49 µm |
2306 |
I-10 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4011 pixels
Sensor resolution width = 4011 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.54 µm |
4011 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
S40 pixel area
Pixel pitch = 2.49 µm
Pixel area = 2.49² = 6.2 µm²
Pixel area = 2.49² = 6.2 µm²
I-10 pixel area
Pixel pitch = 1.54 µm
Pixel area = 1.54² = 2.37 µm²
Pixel area = 1.54² = 2.37 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
S40 pixel density
Sensor resolution width = 2306 pixels
Sensor width = 0.575 cm
Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²
I-10 pixel density
Sensor resolution width = 4011 pixels
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
S40 sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 4.00
Resolution horizontal: X × r = 1734 × 1.33 = 2306
Resolution vertical: X = 1734
Sensor resolution = 2306 x 1734
Sensor height = 4.32 mm
Effective megapixels = 4.00
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 1734
Sensor resolution = 2306 x 1734
I-10 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.10
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
Sensor height = 4.62 mm
Effective megapixels = 12.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
S40 crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
I-10 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
S40 equivalent aperture
Crop factor = 6.02
Aperture = f2.6 - f4.8
35-mm equivalent aperture = (f2.6 - f4.8) × 6.02 = f15.7 - f28.9
Aperture = f2.6 - f4.8
35-mm equivalent aperture = (f2.6 - f4.8) × 6.02 = f15.7 - f28.9
I-10 equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f5.9
35-mm equivalent aperture = (f3.5 - f5.9) × 5.62 = f19.7 - f33.2
Aperture = f3.5 - f5.9
35-mm equivalent aperture = (f3.5 - f5.9) × 5.62 = f19.7 - f33.2
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.