Pentax Optio WG-1 vs. Fujifilm FinePix XP50

Comparison

change cameras »
Optio WG-1 image
vs
FinePix XP50 image
Pentax Optio WG-1 Fujifilm FinePix XP50
check price » check price »
Megapixels
14.00
14.40
Max. image resolution
4288 x 3216
4320 x 3240

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4315 x 3244
4376 x 3290
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Pentax Optio WG-1 Fujifilm FinePix XP50
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
WG-1 and XP50 sensors are the same size.
Pixel pitch
1.43 µm
1.41 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.02 µm (1%)
Pixel pitch of WG-1 is approx. 1% higher than pixel pitch of XP50.
Pixel area
2.04 µm²
1.99 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.05 µm² (3%)
A pixel on Pentax WG-1 sensor is approx. 3% bigger than a pixel on Fujifilm XP50.
Pixel density
49.07 MP/cm²
50.47 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 1.4 µm (3%)
Fujifilm XP50 has approx. 3% higher pixel density than Pentax WG-1.
To learn about the accuracy of these numbers, click here.



Specs

Pentax WG-1
Fujifilm XP50
Crop factor
5.62
5.62
Total megapixels
14.50
Effective megapixels
14.00
14.40
Optical zoom
5x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80 - 6400
Auto, 100, 200, 300, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
50 cm
60 cm
Macro focus range
1 cm
9 cm
Focal length (35mm equiv.)
28 - 140 mm
28 - 140 mm
Aperture priority
No
No
Max. aperture
f3.5 - f5.5
f3.9 - f4.9
Max. aperture (35mm equiv.)
f19.7 - f30.9
f21.9 - f27.5
Metering
Centre weighted, Multi-segment, Spot
Multi-segment
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/1500 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
7
Screen size
2.7"
2.7"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, SDXC, Secure Digital
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion D-LI92 rechargeable battery
Lithium-ion NP-45A rechargeable battery
Weight
157 g
175 g
Dimensions
114 x 58 x 28 mm
99 x 68 x 26 mm
Year
2011
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Pentax WG-1 diagonal

The diagonal of WG-1 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Fujifilm XP50 diagonal

The diagonal of XP50 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

WG-1 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

XP50 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

WG-1 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4315 pixels
Pixel pitch =   6.16  × 1000  = 1.43 µm
4315

XP50 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4376 pixels
Pixel pitch =   6.16  × 1000  = 1.41 µm
4376


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

WG-1 pixel area

Pixel pitch = 1.43 µm

Pixel area = 1.43² = 2.04 µm²

XP50 pixel area

Pixel pitch = 1.41 µm

Pixel area = 1.41² = 1.99 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

WG-1 pixel density

Sensor resolution width = 4315 pixels
Sensor width = 0.616 cm

Pixel density = (4315 / 0.616)² / 1000000 = 49.07 MP/cm²

XP50 pixel density

Sensor resolution width = 4376 pixels
Sensor width = 0.616 cm

Pixel density = (4376 / 0.616)² / 1000000 = 50.47 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

WG-1 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.00
r = 6.16/4.62 = 1.33
X =  14.00 × 1000000  = 3244
1.33
Resolution horizontal: X × r = 3244 × 1.33 = 4315
Resolution vertical: X = 3244

Sensor resolution = 4315 x 3244

XP50 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.40
r = 6.16/4.62 = 1.33
X =  14.40 × 1000000  = 3290
1.33
Resolution horizontal: X × r = 3290 × 1.33 = 4376
Resolution vertical: X = 3290

Sensor resolution = 4376 x 3290


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


WG-1 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

XP50 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

WG-1 equivalent aperture

Crop factor = 5.62
Aperture = f3.5 - f5.5

35-mm equivalent aperture = (f3.5 - f5.5) × 5.62 = f19.7 - f30.9

XP50 equivalent aperture

Crop factor = 5.62
Aperture = f3.9 - f4.9

35-mm equivalent aperture = (f3.9 - f4.9) × 5.62 = f21.9 - f27.5

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.