Praktica Luxmedia 16-Z24S vs. Praktica Luxmedia 18-Z36C
Comparison
change cameras » | |||||
|
vs |
|
|||
Praktica Luxmedia 16-Z24S | Praktica Luxmedia 18-Z36C | ||||
check price » | check price » |
Megapixels
16.10
18.00
Max. image resolution
4608 x 3456
4896 x 3672
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1 |
(ratio) | ||
Praktica Luxmedia 16-Z24S | Praktica Luxmedia 18-Z36C |
Surface area:
28.46 mm² | vs | 28.46 mm² |
Difference: 0 mm² (0%)
Luxmedia 16-Z24S and Luxmedia 18-Z36C sensors are the same size.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.18 µm² (11%)
A pixel on Praktica Luxmedia 16-Z24S sensor is approx. 11% bigger than a pixel on Praktica Luxmedia 18-Z36C.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Praktica Luxmedia 16-Z24S
Praktica Luxmedia 18-Z36C
Total megapixels
Effective megapixels
16.10
18.00
Optical zoom
24x
36x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
25 - 600 mm
22.5 - 810 mm
Aperture priority
No
No
Max. aperture
f3 - f6.9
f3.4 - f5.7
Metering
Wide, center
Multi, center, spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
15 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
6
5
Screen size
3"
3"
Screen resolution
460,800 dots
640 x 480 dots
Video capture
Max. video resolution
Storage types
64 internal memory, compatible with memory cards
SD/SDHC/SDXC/UHS I-1 memory cards
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Rechargeable Li-Ion battery
Rechargeable Li-Ion battery NP120L 3,7V/1700 mAh
Weight
120 g
360 g
Dimensions
93 x 55 x 20 mm
126.5 x 111 x 88 mm
Year
2012
2012
Choose cameras to compare
Popular comparisons:
- Praktica Luxmedia 16-Z24S vs. Canon PowerShot S100
- Praktica Luxmedia 16-Z24S vs. Praktica Luxmedia 18-Z36C
- Praktica Luxmedia 16-Z24S vs. Nikon Coolpix P510
- Praktica Luxmedia 16-Z24S vs. Fujifilm X10
- Praktica Luxmedia 16-Z24S vs. Canon PowerShot SX260 HS
- Praktica Luxmedia 16-Z24S vs. Panasonic Lumix DMC-TZ31
- Praktica Luxmedia 16-Z24S vs. Rollei Powerflex 800
- Praktica Luxmedia 16-Z24S vs. Olympus XZ-1
- Praktica Luxmedia 16-Z24S vs. Fujifilm FinePix F660EXR
- Praktica Luxmedia 16-Z24S vs. Panasonic Lumix DMC-TZ25
- Praktica Luxmedia 16-Z24S vs. Olympus SZ-31MR iHS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Praktica Luxmedia 16-Z24S diagonal
The diagonal of Luxmedia 16-Z24S sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Praktica Luxmedia 18-Z36C diagonal
The diagonal of Luxmedia 18-Z36C sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
Luxmedia 16-Z24S sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Luxmedia 18-Z36C sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
Luxmedia 16-Z24S pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4627 pixels
Sensor resolution width = 4627 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.33 µm |
4627 |
Luxmedia 18-Z36C pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4893 pixels
Sensor resolution width = 4893 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.26 µm |
4893 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
Luxmedia 16-Z24S pixel area
Pixel pitch = 1.33 µm
Pixel area = 1.33² = 1.77 µm²
Pixel area = 1.33² = 1.77 µm²
Luxmedia 18-Z36C pixel area
Pixel pitch = 1.26 µm
Pixel area = 1.26² = 1.59 µm²
Pixel area = 1.26² = 1.59 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
Luxmedia 16-Z24S pixel density
Sensor resolution width = 4627 pixels
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
Luxmedia 18-Z36C pixel density
Sensor resolution width = 4893 pixels
Sensor width = 0.616 cm
Pixel density = (4893 / 0.616)² / 1000000 = 63.09 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4893 / 0.616)² / 1000000 = 63.09 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
Luxmedia 16-Z24S sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.10
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Sensor height = 4.62 mm
Effective megapixels = 16.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Luxmedia 18-Z36C sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 18.00
Resolution horizontal: X × r = 3679 × 1.33 = 4893
Resolution vertical: X = 3679
Sensor resolution = 4893 x 3679
Sensor height = 4.62 mm
Effective megapixels = 18.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3679
Sensor resolution = 4893 x 3679
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
Luxmedia 16-Z24S crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
Luxmedia 18-Z36C crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
Luxmedia 16-Z24S equivalent aperture
Crop factor = 5.62
Aperture = f3 - f6.9
35-mm equivalent aperture = (f3 - f6.9) × 5.62 = f16.9 - f38.8
Aperture = f3 - f6.9
35-mm equivalent aperture = (f3 - f6.9) × 5.62 = f16.9 - f38.8
Luxmedia 18-Z36C equivalent aperture
Crop factor = 5.62
Aperture = f3.4 - f5.7
35-mm equivalent aperture = (f3.4 - f5.7) × 5.62 = f19.1 - f32
Aperture = f3.4 - f5.7
35-mm equivalent aperture = (f3.4 - f5.7) × 5.62 = f19.1 - f32
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.