Ricoh PX vs. Konica-Minolta DiMAGE X50
Comparison
change cameras » | |||||
|
vs |
|
|||
Ricoh PX | Konica-Minolta DiMAGE X50 | ||||
check price » | check price » |
Megapixels
16.00
5.00
Max. image resolution
4608 x 3456
2560 x 1920
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.15 | : | 1 |
(ratio) | ||
Ricoh PX | Konica-Minolta DiMAGE X50 |
Surface area:
28.46 mm² | vs | 24.84 mm² |
Difference: 3.62 mm² (15%)
PX sensor is approx. 1.15x bigger than DiMAGE X50 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 7 years between Ricoh PX (2011) and Konica-Minolta DiMAGE X50 (2004).
Seven years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.17 µm² (176%)
A pixel on Konica-Minolta DiMAGE X50 sensor is approx. 176% bigger than a pixel on Ricoh PX.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Ricoh PX
Konica-Minolta DiMAGE X50
Total megapixels
16.40
Effective megapixels
16.00
Optical zoom
5x
2.8x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100 - 3200
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
50 cm
10 cm
Macro focus range
3 cm
6 cm
Focal length (35mm equiv.)
28 - 140 mm
37 - 105 mm
Aperture priority
No
No
Max. aperture
f3.9 - f5.4
f2.8 - f5
Metering
Centre weighted, Multi-segment, Spot
256-segment Matrix
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
4 sec
Max. shutter speed
1/2000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
Optical (tunnel)
White balance presets
6
5
Screen size
2.7"
2"
Screen resolution
230,000 dots
115,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
MultiMedia, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion DB-100 rechargeable battery
Lithium-Ion (NP-700)
Weight
136 g
125 g
Dimensions
100 x 55 x 21.3 mm
83.5 x 62 x 23.5 mm
Year
2011
2004
Choose cameras to compare
Popular comparisons:
- Ricoh PX vs. Nikon Coolpix S31
- Ricoh PX vs. Pentax Optio W60
- Ricoh PX vs. Nikon Coolpix S30
- Ricoh PX vs. Konica-Minolta DiMAGE X50
- Ricoh PX vs. Sony Cyber-shot DSC-S5000
- Ricoh PX vs. Pentax Optio W80
- Ricoh PX vs. Ricoh GR Digital II
- Ricoh PX vs. Ricoh WG-20
- Ricoh PX vs. Sony Cyber-shot DSC-TF1
- Ricoh PX vs. Fujifilm X100S
- Ricoh PX vs. Pentax Optio WS80
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Ricoh PX diagonal
The diagonal of PX sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Konica-Minolta DiMAGE X50 diagonal
The diagonal of DiMAGE X50 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
PX sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
DiMAGE X50 sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
PX pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.34 µm |
4612 |
DiMAGE X50 pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2579 pixels
Sensor resolution width = 2579 pixels
Pixel pitch = | 5.75 | × 1000 | = 2.23 µm |
2579 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
PX pixel area
Pixel pitch = 1.34 µm
Pixel area = 1.34² = 1.8 µm²
Pixel area = 1.34² = 1.8 µm²
DiMAGE X50 pixel area
Pixel pitch = 2.23 µm
Pixel area = 2.23² = 4.97 µm²
Pixel area = 2.23² = 4.97 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
PX pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
DiMAGE X50 pixel density
Sensor resolution width = 2579 pixels
Sensor width = 0.575 cm
Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
PX sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
DiMAGE X50 sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 5.00
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939
Sensor resolution = 2579 x 1939
Sensor height = 4.32 mm
Effective megapixels = 5.00
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 1939
Sensor resolution = 2579 x 1939
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
PX crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
DiMAGE X50 crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
PX equivalent aperture
Crop factor = 5.62
Aperture = f3.9 - f5.4
35-mm equivalent aperture = (f3.9 - f5.4) × 5.62 = f21.9 - f30.3
Aperture = f3.9 - f5.4
35-mm equivalent aperture = (f3.9 - f5.4) × 5.62 = f21.9 - f30.3
DiMAGE X50 equivalent aperture
Crop factor = 6.02
Aperture = f2.8 - f5
35-mm equivalent aperture = (f2.8 - f5) × 6.02 = f16.9 - f30.1
Aperture = f2.8 - f5
35-mm equivalent aperture = (f2.8 - f5) × 6.02 = f16.9 - f30.1
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.