Ricoh PX vs. Konica-Minolta DiMAGE X50

Comparison

change cameras »
PX image
vs
DiMAGE X50 image
Ricoh PX Konica-Minolta DiMAGE X50
check price » check price »
Megapixels
16.00
5.00
Max. image resolution
4608 x 3456
2560 x 1920

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor resolution
4612 x 3468
2579 x 1939
Diagonal
7.70 mm
7.19 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.15 : 1
(ratio)
Ricoh PX Konica-Minolta DiMAGE X50
Surface area:
28.46 mm² vs 24.84 mm²
Difference: 3.62 mm² (15%)
PX sensor is approx. 1.15x bigger than DiMAGE X50 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 7 years between Ricoh PX (2011) and Konica-Minolta DiMAGE X50 (2004). Seven years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.34 µm
2.23 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.89 µm (66%)
Pixel pitch of DiMAGE X50 is approx. 66% higher than pixel pitch of PX.
Pixel area
1.8 µm²
4.97 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.17 µm² (176%)
A pixel on Konica-Minolta DiMAGE X50 sensor is approx. 176% bigger than a pixel on Ricoh PX.
Pixel density
56.06 MP/cm²
20.12 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 35.94 µm (179%)
Ricoh PX has approx. 179% higher pixel density than Konica-Minolta DiMAGE X50.
To learn about the accuracy of these numbers, click here.



Specs

Ricoh PX
Konica-Minolta DiMAGE X50
Crop factor
5.62
6.02
Total megapixels
16.40
Effective megapixels
16.00
Optical zoom
5x
2.8x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100 - 3200
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
50 cm
10 cm
Macro focus range
3 cm
6 cm
Focal length (35mm equiv.)
28 - 140 mm
37 - 105 mm
Aperture priority
No
No
Max. aperture
f3.9 - f5.4
f2.8 - f5
Max. aperture (35mm equiv.)
f21.9 - f30.3
f16.9 - f30.1
Metering
Centre weighted, Multi-segment, Spot
256-segment Matrix
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
4 sec
Max. shutter speed
1/2000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
Optical (tunnel)
White balance presets
6
5
Screen size
2.7"
2"
Screen resolution
230,000 dots
115,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
MultiMedia, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion DB-100 rechargeable battery
Lithium-Ion (NP-700)
Weight
136 g
125 g
Dimensions
100 x 55 x 21.3 mm
83.5 x 62 x 23.5 mm
Year
2011
2004




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Ricoh PX diagonal

The diagonal of PX sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Konica-Minolta DiMAGE X50 diagonal

The diagonal of DiMAGE X50 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

PX sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

DiMAGE X50 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

PX pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.16  × 1000  = 1.34 µm
4612

DiMAGE X50 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2579 pixels
Pixel pitch =   5.75  × 1000  = 2.23 µm
2579


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

PX pixel area

Pixel pitch = 1.34 µm

Pixel area = 1.34² = 1.8 µm²

DiMAGE X50 pixel area

Pixel pitch = 2.23 µm

Pixel area = 2.23² = 4.97 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

PX pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm

Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²

DiMAGE X50 pixel density

Sensor resolution width = 2579 pixels
Sensor width = 0.575 cm

Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

PX sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468

DiMAGE X50 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 5.00
r = 5.75/4.32 = 1.33
X =  5.00 × 1000000  = 1939
1.33
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939

Sensor resolution = 2579 x 1939


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


PX crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

DiMAGE X50 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

PX equivalent aperture

Crop factor = 5.62
Aperture = f3.9 - f5.4

35-mm equivalent aperture = (f3.9 - f5.4) × 5.62 = f21.9 - f30.3

DiMAGE X50 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f5

35-mm equivalent aperture = (f2.8 - f5) × 6.02 = f16.9 - f30.1

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.