Rollei Powerflex 440 vs. Olympus PEN-F

Comparison

change cameras »
Powerflex 440 image
vs
PEN-F image
Rollei Powerflex 440 Olympus PEN-F
check price » check price »
Megapixels
14.00
20.30
Max. image resolution
4288 x 3216
5184 x 3888

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
Four Thirds (17.3 x 13 mm)
Sensor resolution
4315 x 3244
5196 x 3907
Diagonal
7.60 mm
21.64 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 8.11
(ratio)
Rollei Powerflex 440 Olympus PEN-F
Surface area:
27.72 mm² vs 224.90 mm²
Difference: 197.18 mm² (711%)
PEN-F sensor is approx. 8.11x bigger than Powerflex 440 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 6 years between Rollei Powerflex 440 (2010) and Olympus PEN-F (2016). Six years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.41 µm
3.33 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.92 µm (136%)
Pixel pitch of PEN-F is approx. 136% higher than pixel pitch of Powerflex 440.
Pixel area
1.99 µm²
11.09 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 9.1 µm² (457%)
A pixel on Olympus PEN-F sensor is approx. 457% bigger than a pixel on Rollei Powerflex 440.
Pixel density
50.37 MP/cm²
9.02 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 41.35 µm (458%)
Rollei Powerflex 440 has approx. 458% higher pixel density than Olympus PEN-F.
To learn about the accuracy of these numbers, click here.



Specs

Rollei Powerflex 440
Olympus PEN-F
Crop factor
5.69
2
Total megapixels
21.80
Effective megapixels
20.30
Optical zoom
Yes
 
Digital zoom
Yes
Yes
ISO sensitivity
Auto
Auto, 80-25600
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
26 - 104 mm
Aperture priority
No
Yes
Max. aperture
f3.0 - f5.8
Max. aperture (35mm equiv.)
f17.1 - f33
n/a
Metering
Centre weighted, Multi-segment, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
60 sec
Max. shutter speed
1/8000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
6
7
Screen size
2.7"
3"
Screen resolution
230,000 dots
1,037,000 dots
Video capture
Max. video resolution
1920x1080 (60p/50p/30p/25p/24p)
Storage types
SDHC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
BLN-1 lithium-ion battery
Weight
114 g
427 g
Dimensions
95.3 x 55.7 x 19.5 mm
124.8 x 72.1 x 37.3 mm
Year
2010
2016




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Rollei Powerflex 440 diagonal

The diagonal of Powerflex 440 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm

Olympus PEN-F diagonal

w = 17.30 mm
h = 13.00 mm
Diagonal =  17.30² + 13.00²   = 21.64 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Powerflex 440 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²

PEN-F sensor area

Width = 17.30 mm
Height = 13.00 mm

Surface area = 17.30 × 13.00 = 224.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Powerflex 440 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4315 pixels
Pixel pitch =   6.08  × 1000  = 1.41 µm
4315

PEN-F pixel pitch

Sensor width = 17.30 mm
Sensor resolution width = 5196 pixels
Pixel pitch =   17.30  × 1000  = 3.33 µm
5196


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Powerflex 440 pixel area

Pixel pitch = 1.41 µm

Pixel area = 1.41² = 1.99 µm²

PEN-F pixel area

Pixel pitch = 3.33 µm

Pixel area = 3.33² = 11.09 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Powerflex 440 pixel density

Sensor resolution width = 4315 pixels
Sensor width = 0.608 cm

Pixel density = (4315 / 0.608)² / 1000000 = 50.37 MP/cm²

PEN-F pixel density

Sensor resolution width = 5196 pixels
Sensor width = 1.73 cm

Pixel density = (5196 / 1.73)² / 1000000 = 9.02 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Powerflex 440 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 14.00
r = 6.08/4.56 = 1.33
X =  14.00 × 1000000  = 3244
1.33
Resolution horizontal: X × r = 3244 × 1.33 = 4315
Resolution vertical: X = 3244

Sensor resolution = 4315 x 3244

PEN-F sensor resolution

Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 20.30
r = 17.30/13.00 = 1.33
X =  20.30 × 1000000  = 3907
1.33
Resolution horizontal: X × r = 3907 × 1.33 = 5196
Resolution vertical: X = 3907

Sensor resolution = 5196 x 3907


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Powerflex 440 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

PEN-F crop factor

Sensor diagonal in mm = 21.64 mm
Crop factor =   43.27  = 2
21.64

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Powerflex 440 equivalent aperture

Crop factor = 5.69
Aperture = f3.0 - f5.8

35-mm equivalent aperture = (f3.0 - f5.8) × 5.69 = f17.1 - f33

PEN-F equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Olympus PEN-F, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Olympus PEN-F is 2

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.