Samsung ES73 vs. Sony Cyber-shot DSC-T500
Comparison
change cameras » | |||||
|
vs |
|
|||
Samsung ES73 | Sony Cyber-shot DSC-T500 | ||||
check price » | check price » |
Megapixels
12.30
10.10
Max. image resolution
4000 x 3000
3648 x 2736
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.03 |
(ratio) | ||
Samsung ES73 | Sony Cyber-shot DSC-T500 |
Surface area:
27.72 mm² | vs | 28.46 mm² |
Difference: 0.74 mm² (3%)
T500 sensor is slightly bigger than ES73 sensor (only 3% difference).
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.57 µm² (25%)
A pixel on Sony T500 sensor is approx. 25% bigger than a pixel on Samsung ES73.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Samsung ES73
Sony T500
Total megapixels
Effective megapixels
Optical zoom
Yes
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600
Auto, 80, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
80 cm
8 cm
Macro focus range
5 cm
1 cm
Focal length (35mm equiv.)
27 - 135 mm
33 - 165 mm
Aperture priority
No
No
Max. aperture
f3.5 - f5.9
f3.5 - f4.4
Metering
Centre weighted, Multi-segment, Spot
Centre weighted, Multi-pattern, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
1 sec
Max. shutter speed
1/2000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
7
Screen size
2.7"
3.5"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
Memory Stick Duo, Memory Stick Pro Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
Lithium-Ion (NP-FD1)
Weight
126 g
185 g
Dimensions
96.3 x 58.8 x 21.7 mm
97 x 59 x 22 mm
Year
2009
2008
Choose cameras to compare
Popular comparisons:
- Samsung ES73 vs. Samsung ES80
- Samsung ES73 vs. Sony Cyber-shot DSC-W310
- Samsung ES73 vs. Sony Cyber-shot DSC-H20
- Samsung ES73 vs. Nikon Coolpix S2600
- Samsung ES73 vs. Samsung ES95
- Samsung ES73 vs. Samsung ES25
- Samsung ES73 vs. Olympus VG-120
- Samsung ES73 vs. Samsung ST77
- Samsung ES73 vs. Nikon Coolpix L20
- Samsung ES73 vs. Sony Cyber-shot DSC-T500
- Samsung ES73 vs. Samsung ES90
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Samsung ES73 diagonal
The diagonal of ES73 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Sony T500 diagonal
The diagonal of T500 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
ES73 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
T500 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
ES73 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 4045 pixels
Sensor resolution width = 4045 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.5 µm |
4045 |
T500 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3665 pixels
Sensor resolution width = 3665 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.68 µm |
3665 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
ES73 pixel area
Pixel pitch = 1.5 µm
Pixel area = 1.5² = 2.25 µm²
Pixel area = 1.5² = 2.25 µm²
T500 pixel area
Pixel pitch = 1.68 µm
Pixel area = 1.68² = 2.82 µm²
Pixel area = 1.68² = 2.82 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
ES73 pixel density
Sensor resolution width = 4045 pixels
Sensor width = 0.608 cm
Pixel density = (4045 / 0.608)² / 1000000 = 44.26 MP/cm²
Sensor width = 0.608 cm
Pixel density = (4045 / 0.608)² / 1000000 = 44.26 MP/cm²
T500 pixel density
Sensor resolution width = 3665 pixels
Sensor width = 0.616 cm
Pixel density = (3665 / 0.616)² / 1000000 = 35.4 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3665 / 0.616)² / 1000000 = 35.4 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
ES73 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.30
Resolution horizontal: X × r = 3041 × 1.33 = 4045
Resolution vertical: X = 3041
Sensor resolution = 4045 x 3041
Sensor height = 4.56 mm
Effective megapixels = 12.30
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 3041
Sensor resolution = 4045 x 3041
T500 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.10
Resolution horizontal: X × r = 2756 × 1.33 = 3665
Resolution vertical: X = 2756
Sensor resolution = 3665 x 2756
Sensor height = 4.62 mm
Effective megapixels = 10.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 2756
Sensor resolution = 3665 x 2756
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
ES73 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
T500 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
ES73 equivalent aperture
Crop factor = 5.69
Aperture = f3.5 - f5.9
35-mm equivalent aperture = (f3.5 - f5.9) × 5.69 = f19.9 - f33.6
Aperture = f3.5 - f5.9
35-mm equivalent aperture = (f3.5 - f5.9) × 5.69 = f19.9 - f33.6
T500 equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f4.4
35-mm equivalent aperture = (f3.5 - f4.4) × 5.62 = f19.7 - f24.7
Aperture = f3.5 - f4.4
35-mm equivalent aperture = (f3.5 - f4.4) × 5.62 = f19.7 - f24.7
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.