Samsung EX2F vs. Samsung EX1

Comparison

change cameras »
EX2F image
vs
EX1 image
Samsung EX2F Samsung EX1
check price » check price »
Megapixels
12.40
10.00
Max. image resolution
3648 x 2736

Sensor

Sensor type
CMOS
CCD
Sensor size
1/1.7" (~ 7.53 x 5.64 mm)
1/1.7" (~ 7.53 x 5.64 mm)
Sensor resolution
4076 x 3042
3661 x 2732
Diagonal
9.41 mm
9.41 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Samsung EX2F Samsung EX1
Surface area:
42.47 mm² vs 42.47 mm²
Difference: 0 mm² (0%)
EX2F and EX1 sensors are the same size.
Note: You are comparing cameras of different generations. There is a 2 year gap between Samsung EX2F (2012) and Samsung EX1 (2010). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.85 µm
2.06 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.21 µm (11%)
Pixel pitch of EX1 is approx. 11% higher than pixel pitch of EX2F.
Pixel area
3.42 µm²
4.24 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.82 µm² (24%)
A pixel on Samsung EX1 sensor is approx. 24% bigger than a pixel on Samsung EX2F.
Pixel density
29.3 MP/cm²
23.64 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 5.66 µm (24%)
Samsung EX2F has approx. 24% higher pixel density than Samsung EX1.
To learn about the accuracy of these numbers, click here.



Specs

Samsung EX2F
Samsung EX1
Crop factor
4.6
4.6
Total megapixels
Effective megapixels
12.40
10.00
Optical zoom
3.3x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600, 3200
Auto, 80, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
80 cm
Macro focus range
5 cm
Focal length (35mm equiv.)
24 - 80 mm
24 - 72 mm
Aperture priority
Yes
Yes
Max. aperture
f1.4 - f2.7
f1.8 - f2.4
Max. aperture (35mm equiv.)
f6.4 - f12.4
f8.3 - f11
Metering
Centre weighted, Multi-segment, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
8 sec
Max. shutter speed
1/1500 sec
Built-in flash
External flash
Viewfinder
Electronic (optional)
None
White balance presets
7
Screen size
3"
3"
Screen resolution
921.000 dots
Video capture
Max. video resolution
Storage types
SD/SDHC/SDXC
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion SLB-10A battery
Lithium-Ion SLB-07A battery
Weight
294 g
386 g
Dimensions
112 x 62 x 29 mm
114.3 x 63.2 x 29.2 mm
Year
2012
2010




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Samsung EX2F diagonal

The diagonal of EX2F sensor is not 1/1.7 or 0.59" (14.9 mm) as you might expect, but approximately two thirds of that value - 9.41 mm. If you want to know why, see sensor sizes.

w = 7.53 mm
h = 5.64 mm
Diagonal =  7.53² + 5.64²   = 9.41 mm

Samsung EX1 diagonal

The diagonal of EX1 sensor is not 1/1.7 or 0.59" (14.9 mm) as you might expect, but approximately two thirds of that value - 9.41 mm. If you want to know why, see sensor sizes.

w = 7.53 mm
h = 5.64 mm
Diagonal =  7.53² + 5.64²   = 9.41 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

EX2F sensor area

Width = 7.53 mm
Height = 5.64 mm

Surface area = 7.53 × 5.64 = 42.47 mm²

EX1 sensor area

Width = 7.53 mm
Height = 5.64 mm

Surface area = 7.53 × 5.64 = 42.47 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

EX2F pixel pitch

Sensor width = 7.53 mm
Sensor resolution width = 4076 pixels
Pixel pitch =   7.53  × 1000  = 1.85 µm
4076

EX1 pixel pitch

Sensor width = 7.53 mm
Sensor resolution width = 3661 pixels
Pixel pitch =   7.53  × 1000  = 2.06 µm
3661


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

EX2F pixel area

Pixel pitch = 1.85 µm

Pixel area = 1.85² = 3.42 µm²

EX1 pixel area

Pixel pitch = 2.06 µm

Pixel area = 2.06² = 4.24 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

EX2F pixel density

Sensor resolution width = 4076 pixels
Sensor width = 0.753 cm

Pixel density = (4076 / 0.753)² / 1000000 = 29.3 MP/cm²

EX1 pixel density

Sensor resolution width = 3661 pixels
Sensor width = 0.753 cm

Pixel density = (3661 / 0.753)² / 1000000 = 23.64 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

EX2F sensor resolution

Sensor width = 7.53 mm
Sensor height = 5.64 mm
Effective megapixels = 12.40
r = 7.53/5.64 = 1.34
X =  12.40 × 1000000  = 3042
1.34
Resolution horizontal: X × r = 3042 × 1.34 = 4076
Resolution vertical: X = 3042

Sensor resolution = 4076 x 3042

EX1 sensor resolution

Sensor width = 7.53 mm
Sensor height = 5.64 mm
Effective megapixels = 10.00
r = 7.53/5.64 = 1.34
X =  10.00 × 1000000  = 2732
1.34
Resolution horizontal: X × r = 2732 × 1.34 = 3661
Resolution vertical: X = 2732

Sensor resolution = 3661 x 2732


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


EX2F crop factor

Sensor diagonal in mm = 9.41 mm
Crop factor =   43.27  = 4.6
9.41

EX1 crop factor

Sensor diagonal in mm = 9.41 mm
Crop factor =   43.27  = 4.6
9.41

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

EX2F equivalent aperture

Crop factor = 4.6
Aperture = f1.4 - f2.7

35-mm equivalent aperture = (f1.4 - f2.7) × 4.6 = f6.4 - f12.4

EX1 equivalent aperture

Crop factor = 4.6
Aperture = f1.8 - f2.4

35-mm equivalent aperture = (f1.8 - f2.4) × 4.6 = f8.3 - f11

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.