Sanyo Xacti VPC-E1075 vs. Sanyo Xacti E60
Comparison
change cameras » | |||||
|
vs |
|
|||
Sanyo Xacti VPC-E1075 | Sanyo Xacti E60 | ||||
check price » | check price » |
Megapixels
10.00
6.37
Max. image resolution
3680 x 2760
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.12 | : | 1 |
(ratio) | ||
Sanyo Xacti VPC-E1075 | Sanyo Xacti E60 |
Surface area:
27.72 mm² | vs | 24.84 mm² |
Difference: 2.88 mm² (12%)
VPC-E1075 sensor is approx. 1.12x bigger than E60 sensor.
Note: You are comparing cameras of different generations.
There is a 2 year gap between Sanyo VPC-E1075 (2008) and Sanyo E60 (2006).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.13 µm² (41%)
A pixel on Sanyo E60 sensor is approx. 41% bigger than a pixel on Sanyo VPC-E1075.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Sanyo VPC-E1075
Sanyo E60
Total megapixels
Effective megapixels
Optical zoom
Yes
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
60 cm
20 cm
Macro focus range
10 cm
1 cm
Focal length (35mm equiv.)
32 - 98 mm
38 - 114 mm
Aperture priority
No
No
Max. aperture
f2.9 - f5.2
f3.3 - f4.4
Metering
Centre weighted
Centre weighted, Multi-segment, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±1.8 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
2 sec
2 sec
Max. shutter speed
1/1200 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
6
Screen size
2.7"
3"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2x AA
Li-Ion
Weight
125 g
155 g
Dimensions
93 x 58 x 21 mm
97,7 x 22,8 x 59,5 mm
Year
2008
2006
Choose cameras to compare
Popular comparisons:
- Sanyo Xacti VPC-E1075 vs. Sanyo Xacti VPC-E10
- Sanyo Xacti VPC-E1075 vs. Sony Cyber-shot DSC-HX300
- Sanyo Xacti VPC-E1075 vs. Sanyo Xacti E6
- Sanyo Xacti VPC-E1075 vs. Sanyo Xacti E60
- Sanyo Xacti VPC-E1075 vs. Casio Exilim EX-Z60
- Sanyo Xacti VPC-E1075 vs. Kodak EasyShare Z650
- Sanyo Xacti VPC-E1075 vs. Olympus OM-D E-M10 III
- Sanyo Xacti VPC-E1075 vs. Sony Cyber-shot DSC-H20
- Sanyo Xacti VPC-E1075 vs. Nikon Coolpix S210
- Sanyo Xacti VPC-E1075 vs. Canon EOS 50D
- Sanyo Xacti VPC-E1075 vs. Sanyo Xacti VPC-T850
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Sanyo VPC-E1075 diagonal
The diagonal of VPC-E1075 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Sanyo E60 diagonal
The diagonal of E60 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
VPC-E1075 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
E60 sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
VPC-E1075 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 3647 pixels
Sensor resolution width = 3647 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.67 µm |
3647 |
E60 pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2910 pixels
Sensor resolution width = 2910 pixels
Pixel pitch = | 5.75 | × 1000 | = 1.98 µm |
2910 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
VPC-E1075 pixel area
Pixel pitch = 1.67 µm
Pixel area = 1.67² = 2.79 µm²
Pixel area = 1.67² = 2.79 µm²
E60 pixel area
Pixel pitch = 1.98 µm
Pixel area = 1.98² = 3.92 µm²
Pixel area = 1.98² = 3.92 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
VPC-E1075 pixel density
Sensor resolution width = 3647 pixels
Sensor width = 0.608 cm
Pixel density = (3647 / 0.608)² / 1000000 = 35.98 MP/cm²
Sensor width = 0.608 cm
Pixel density = (3647 / 0.608)² / 1000000 = 35.98 MP/cm²
E60 pixel density
Sensor resolution width = 2910 pixels
Sensor width = 0.575 cm
Pixel density = (2910 / 0.575)² / 1000000 = 25.61 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2910 / 0.575)² / 1000000 = 25.61 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
VPC-E1075 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 10.00
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Sensor height = 4.56 mm
Effective megapixels = 10.00
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
E60 sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.37
Resolution horizontal: X × r = 2188 × 1.33 = 2910
Resolution vertical: X = 2188
Sensor resolution = 2910 x 2188
Sensor height = 4.32 mm
Effective megapixels = 6.37
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 2188
Sensor resolution = 2910 x 2188
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
VPC-E1075 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
E60 crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
VPC-E1075 equivalent aperture
Crop factor = 5.69
Aperture = f2.9 - f5.2
35-mm equivalent aperture = (f2.9 - f5.2) × 5.69 = f16.5 - f29.6
Aperture = f2.9 - f5.2
35-mm equivalent aperture = (f2.9 - f5.2) × 5.69 = f16.5 - f29.6
E60 equivalent aperture
Crop factor = 6.02
Aperture = f3.3 - f4.4
35-mm equivalent aperture = (f3.3 - f4.4) × 6.02 = f19.9 - f26.5
Aperture = f3.3 - f4.4
35-mm equivalent aperture = (f3.3 - f4.4) × 6.02 = f19.9 - f26.5
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.