Sony Cyber-shot DSC-RX10 IV vs. Canon EOS 80D

Comparison

change cameras »
Cyber-shot DSC-RX10 IV image
vs
EOS 80D image
Sony Cyber-shot DSC-RX10 IV Canon EOS 80D
check price » check price »
Megapixels
20.10
24.20
Max. image resolution
5472 x 3648
6000 x 4000

Sensor

Sensor type
CMOS
CMOS
Sensor size
13.2 x 8.8 mm
22.5 x 15 mm
Sensor resolution
5492 x 3661
6026 x 4017
Diagonal
15.86 mm
27.04 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 2.91
(ratio)
Sony Cyber-shot DSC-RX10 IV Canon EOS 80D
Surface area:
116.16 mm² vs 337.50 mm²
Difference: 221.34 mm² (191%)
80D sensor is approx. 2.91x bigger than RX10 IV sensor.
Pixel pitch
2.4 µm
3.73 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.33 µm (55%)
Pixel pitch of 80D is approx. 55% higher than pixel pitch of RX10 IV.
Pixel area
5.76 µm²
13.91 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.15 µm² (141%)
A pixel on Canon 80D sensor is approx. 141% bigger than a pixel on Sony RX10 IV.
Pixel density
17.31 MP/cm²
7.17 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 10.14 µm (141%)
Sony RX10 IV has approx. 141% higher pixel density than Canon 80D.
To learn about the accuracy of these numbers, click here.



Specs

Sony RX10 IV
Canon 80D
Crop factor
2.73
1.6
Total megapixels
21.00
25.80
Effective megapixels
20.10
24.20
Optical zoom
25x
Digital zoom
Yes
ISO sensitivity
Auto, 100 - 12800 (extends to 64-25600)
Auto, 100-16000 (expands to 25600)
RAW
Manual focus
Normal focus range
3 cm
Macro focus range
Focal length (35mm equiv.)
24 - 600 mm
Aperture priority
Yes
Yes
Max. aperture
f2.4 - f4
Max. aperture (35mm equiv.)
f6.6 - f10.9
n/a
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±3 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/2000 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
Electronic
Optical (pentaprism)
White balance presets
9
6
Screen size
3"
3"
Screen resolution
1,440,000 dots
1,040,000 dots
Video capture
Max. video resolution
3840x2160 (30p/25p/24p)
1920x1080 (60p/50p/30p/25p/24p)
Storage types
SD/SDHC/SDXC, MS Duo/Pro Duo/Pro-HG Duo
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-FW50 lithium-ion battery
LP-E6N lithium-ion battery
Weight
1095 g
730 g
Dimensions
132.5 x 94 x 127.4 mm
139 x 105.2 x 78.5 mm
Year
2017
2016




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Sony RX10 IV diagonal

w = 13.20 mm
h = 8.80 mm
Diagonal =  13.20² + 8.80²   = 15.86 mm

Canon 80D diagonal

w = 22.50 mm
h = 15.00 mm
Diagonal =  22.50² + 15.00²   = 27.04 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

RX10 IV sensor area

Width = 13.20 mm
Height = 8.80 mm

Surface area = 13.20 × 8.80 = 116.16 mm²

80D sensor area

Width = 22.50 mm
Height = 15.00 mm

Surface area = 22.50 × 15.00 = 337.50 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

RX10 IV pixel pitch

Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Pixel pitch =   13.20  × 1000  = 2.4 µm
5492

80D pixel pitch

Sensor width = 22.50 mm
Sensor resolution width = 6026 pixels
Pixel pitch =   22.50  × 1000  = 3.73 µm
6026


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

RX10 IV pixel area

Pixel pitch = 2.4 µm

Pixel area = 2.4² = 5.76 µm²

80D pixel area

Pixel pitch = 3.73 µm

Pixel area = 3.73² = 13.91 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

RX10 IV pixel density

Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm

Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²

80D pixel density

Sensor resolution width = 6026 pixels
Sensor width = 2.25 cm

Pixel density = (6026 / 2.25)² / 1000000 = 7.17 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

RX10 IV sensor resolution

Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5
X =  20.10 × 1000000  = 3661
1.5
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661

Sensor resolution = 5492 x 3661

80D sensor resolution

Sensor width = 22.50 mm
Sensor height = 15.00 mm
Effective megapixels = 24.20
r = 22.50/15.00 = 1.5
X =  24.20 × 1000000  = 4017
1.5
Resolution horizontal: X × r = 4017 × 1.5 = 6026
Resolution vertical: X = 4017

Sensor resolution = 6026 x 4017


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


RX10 IV crop factor

Sensor diagonal in mm = 15.86 mm
Crop factor =   43.27  = 2.73
15.86

80D crop factor

Sensor diagonal in mm = 27.04 mm
Crop factor =   43.27  = 1.6
27.04

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

RX10 IV equivalent aperture

Crop factor = 2.73
Aperture = f2.4 - f4

35-mm equivalent aperture = (f2.4 - f4) × 2.73 = f6.6 - f10.9

80D equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Canon 80D, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Canon 80D is 1.6

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.