Toshiba PDR 2300 vs. Panasonic Lumix DMC-ZS25

Comparison

change cameras »
PDR 2300 image
vs
Lumix DMC-ZS25 image
Toshiba PDR 2300 Panasonic Lumix DMC-ZS25
check price » check price »
Megapixels
2.00
16.10
Max. image resolution
1600 x 1200
4608 x 3456

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.7" (~ 5.33 x 4 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor resolution
1631 x 1226
4627 x 3479
Diagonal
6.66 mm
7.60 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.3
(ratio)
Toshiba PDR 2300 Panasonic Lumix DMC-ZS25
Surface area:
21.32 mm² vs 27.72 mm²
Difference: 6.4 mm² (30%)
ZS25 sensor is approx. 1.3x bigger than PDR 2300 sensor.
Note: You are comparing sensors of vastly different generations. There is a gap of 11 years between Toshiba PDR 2300 (2002) and Panasonic ZS25 (2013). Eleven years is a huge amount of time, technology wise, resulting in newer sensor being much more efficient than the older one.
Pixel pitch
3.27 µm
1.31 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.96 µm (150%)
Pixel pitch of PDR 2300 is approx. 150% higher than pixel pitch of ZS25.
Pixel area
10.69 µm²
1.72 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.97 µm² (522%)
A pixel on Toshiba PDR 2300 sensor is approx. 522% bigger than a pixel on Panasonic ZS25.
Pixel density
9.36 MP/cm²
57.92 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 48.56 µm (519%)
Panasonic ZS25 has approx. 519% higher pixel density than Toshiba PDR 2300.
To learn about the accuracy of these numbers, click here.



Specs

Toshiba PDR 2300
Panasonic ZS25
Crop factor
6.5
5.69
Total megapixels
17.50
Effective megapixels
16.10
Optical zoom
Yes
20x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400
Auto, 100, 200, 400, 800, 1600. 3200, 6400
RAW
Manual focus
Normal focus range
50 cm
50 cm
Macro focus range
20 cm
3 cm
Focal length (35mm equiv.)
36 - 108 mm
24 - 480 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.4
f3.3 - f6.4
Max. aperture (35mm equiv.)
f18.2 - f28.6
f18.8 - f36.4
Metering
Matrix
Multi, Center-weighted, Spot
Exposure compensation
±1.8 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/3 sec
15 sec
Max. shutter speed
1/1000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical
None
White balance presets
5
4
Screen size
1.6"
3"
Screen resolution
60,000 dots
460,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
SD/SDHC/SDXC
USB
USB 1.1
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
4x AA
Lithium-Ion rechargeable battery
Weight
310 g
193 g
Dimensions
110 x 68 x 51 mm
104.9 x 58.9 x 28.7 mm
Year
2002
2013




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Toshiba PDR 2300 diagonal

The diagonal of PDR 2300 sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of that value - 6.66 mm. If you want to know why, see sensor sizes.

w = 5.33 mm
h = 4.00 mm
Diagonal =  5.33² + 4.00²   = 6.66 mm

Panasonic ZS25 diagonal

The diagonal of ZS25 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

PDR 2300 sensor area

Width = 5.33 mm
Height = 4.00 mm

Surface area = 5.33 × 4.00 = 21.32 mm²

ZS25 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

PDR 2300 pixel pitch

Sensor width = 5.33 mm
Sensor resolution width = 1631 pixels
Pixel pitch =   5.33  × 1000  = 3.27 µm
1631

ZS25 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4627 pixels
Pixel pitch =   6.08  × 1000  = 1.31 µm
4627


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

PDR 2300 pixel area

Pixel pitch = 3.27 µm

Pixel area = 3.27² = 10.69 µm²

ZS25 pixel area

Pixel pitch = 1.31 µm

Pixel area = 1.31² = 1.72 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

PDR 2300 pixel density

Sensor resolution width = 1631 pixels
Sensor width = 0.533 cm

Pixel density = (1631 / 0.533)² / 1000000 = 9.36 MP/cm²

ZS25 pixel density

Sensor resolution width = 4627 pixels
Sensor width = 0.608 cm

Pixel density = (4627 / 0.608)² / 1000000 = 57.92 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

PDR 2300 sensor resolution

Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 2.00
r = 5.33/4.00 = 1.33
X =  2.00 × 1000000  = 1226
1.33
Resolution horizontal: X × r = 1226 × 1.33 = 1631
Resolution vertical: X = 1226

Sensor resolution = 1631 x 1226

ZS25 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 16.10
r = 6.08/4.56 = 1.33
X =  16.10 × 1000000  = 3479
1.33
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479

Sensor resolution = 4627 x 3479


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


PDR 2300 crop factor

Sensor diagonal in mm = 6.66 mm
Crop factor =   43.27  = 6.5
6.66

ZS25 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

PDR 2300 equivalent aperture

Crop factor = 6.5
Aperture = f2.8 - f4.4

35-mm equivalent aperture = (f2.8 - f4.4) × 6.5 = f18.2 - f28.6

ZS25 equivalent aperture

Crop factor = 5.69
Aperture = f3.3 - f6.4

35-mm equivalent aperture = (f3.3 - f6.4) × 5.69 = f18.8 - f36.4

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.