Yakumo Mega Image 35 vs. Canon EOS 5D Mark III

Comparison

change cameras »
Mega Image 35 image
vs
EOS 5D Mark III image
Yakumo Mega Image 35 Canon EOS 5D Mark III
check price » check price »
Megapixels
3.30
22.30
Max. image resolution
2048 x 1536
5760 x 3840

Sensor

Sensor type
CCD
CMOS
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
36 x 24 mm
Sensor resolution
2095 x 1575
5784 x 3856
Diagonal
8.89 mm
43.27 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 22.8
(ratio)
Yakumo Mega Image 35 Canon EOS 5D Mark III
Surface area:
37.90 mm² vs 864.00 mm²
Difference: 826.1 mm² (2180%)
5D Mark III sensor is approx. 22.8x bigger than 35 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 9 years between Yakumo 35 (2003) and Canon 5D Mark III (2012). Nine years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
3.39 µm
6.22 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.83 µm (83%)
Pixel pitch of 5D Mark III is approx. 83% higher than pixel pitch of 35.
Pixel area
11.49 µm²
38.69 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 27.2 µm² (237%)
A pixel on Canon 5D Mark III sensor is approx. 237% bigger than a pixel on Yakumo 35.
Pixel density
8.68 MP/cm²
2.58 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 6.1 µm (236%)
Yakumo 35 has approx. 236% higher pixel density than Canon 5D Mark III.
To learn about the accuracy of these numbers, click here.



Specs

Yakumo 35
Canon 5D Mark III
Crop factor
4.87
1
Total megapixels
23.38
Effective megapixels
22.30
Optical zoom
Yes
Digital zoom
Yes
No
ISO sensitivity
Auto
Auto, 100 - 25600 in 1/3 stops, plus 50, 51200, 102400 as option
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
32 - 96 mm
Aperture priority
No
Yes
Max. aperture
f2.8
Max. aperture (35mm equiv.)
f13.6
n/a
Metering
Centre weighted
Multi, Center-weighted, Spot, Partial
Exposure compensation
±1.5 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
2 sec
30 sec
Max. shutter speed
1/800 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
Optical
Optical (pentaprism)
White balance presets
4
6
Screen size
1.5"
3.2"
Screen resolution
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
Storage types
CompactFlash type I
Compact Flash Type I (UDMA compatible), SD/SDHC/SDXC
USB
USB 1.1
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
4x AA
Lithium-Ion LP-E6 rechargeable battery
Weight
245 g
950 g
Dimensions
112 x 44 x 77 mm
152 x 116 x 76 mm
Year
2003
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Yakumo 35 diagonal

The diagonal of 35 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm

Canon 5D Mark III diagonal

w = 36.00 mm
h = 24.00 mm
Diagonal =  36.00² + 24.00²   = 43.27 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

35 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²

5D Mark III sensor area

Width = 36.00 mm
Height = 24.00 mm

Surface area = 36.00 × 24.00 = 864.00 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

35 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2095 pixels
Pixel pitch =   7.11  × 1000  = 3.39 µm
2095

5D Mark III pixel pitch

Sensor width = 36.00 mm
Sensor resolution width = 5784 pixels
Pixel pitch =   36.00  × 1000  = 6.22 µm
5784


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

35 pixel area

Pixel pitch = 3.39 µm

Pixel area = 3.39² = 11.49 µm²

5D Mark III pixel area

Pixel pitch = 6.22 µm

Pixel area = 6.22² = 38.69 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

35 pixel density

Sensor resolution width = 2095 pixels
Sensor width = 0.711 cm

Pixel density = (2095 / 0.711)² / 1000000 = 8.68 MP/cm²

5D Mark III pixel density

Sensor resolution width = 5784 pixels
Sensor width = 3.6 cm

Pixel density = (5784 / 3.6)² / 1000000 = 2.58 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

35 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 3.30
r = 7.11/5.33 = 1.33
X =  3.30 × 1000000  = 1575
1.33
Resolution horizontal: X × r = 1575 × 1.33 = 2095
Resolution vertical: X = 1575

Sensor resolution = 2095 x 1575

5D Mark III sensor resolution

Sensor width = 36.00 mm
Sensor height = 24.00 mm
Effective megapixels = 22.30
r = 36.00/24.00 = 1.5
X =  22.30 × 1000000  = 3856
1.5
Resolution horizontal: X × r = 3856 × 1.5 = 5784
Resolution vertical: X = 3856

Sensor resolution = 5784 x 3856


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


35 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

5D Mark III crop factor

Sensor diagonal in mm = 43.27 mm
Crop factor =   43.27  = 1
43.27

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

35 equivalent aperture

Crop factor = 4.87
Aperture = f2.8

35-mm equivalent aperture = (f2.8) × 4.87 = f13.6

5D Mark III equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Canon 5D Mark III, take the aperture of the lens you're using and multiply it with crop factor.

Since crop factor for Canon 5D Mark III is 1, the equivalent aperture is aperture.

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.