Fujifilm FinePix JZ250
Specs
Brand:  Fujifilm 
Model:  FinePix JZ250 
Megapixels:  16.00 
Sensor:  1/2.3" (~ 6.16 x 4.62 mm) 
Price:  check here » 
Sensor info
Fujifilm JZ250 comes with a
1/2.3" (~ 6.16 x 4.62 mm) image sensor, which has a diagonal of
7.70 mm (0.3") and a surface area of
28.46 mm².
If you want to know about the accuracy of these numbers,
click here.
Actual sensor size
Note: Actual size is set to screen → change »
This is the actual size of the JZ250 sensor: ~6.16 x 4.62 mm
The sensor has a surface area of 28.5 mm².
There are approx. 16,000,000 photosites (pixels) on this area.
Pixel pitch, which is a measure of the distance between pixels, is 1.34 µm.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next.
Pixel or photosite area is 1.8 µm². The larger the photosite, the more light it can capture and the more information can be recorded.
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor. Fujifilm JZ250 has a pixel density of 56.06 MP/cm².
These numbers are important in terms of assessing the overall quality of a digital camera. Generally, the bigger (and newer) the sensor, pixel pitch and photosite area, and the smaller the pixel density, the better the camera. If you want to see how JZ250 compares to other cameras, click here.
Pixel or photosite area is 1.8 µm². The larger the photosite, the more light it can capture and the more information can be recorded.
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor. Fujifilm JZ250 has a pixel density of 56.06 MP/cm².
These numbers are important in terms of assessing the overall quality of a digital camera. Generally, the bigger (and newer) the sensor, pixel pitch and photosite area, and the smaller the pixel density, the better the camera. If you want to see how JZ250 compares to other cameras, click here.
Specifications
Brand:  Fujifilm 
Model:  FinePix JZ250 
Megapixels:  16.00 
Sensor size:  1/2.3" (~ 6.16 x 4.62 mm) 
Sensor type:  n/a 
Sensor resolution:  4612 x 3468 
Max. image resolution:  4608 x 3456 
Crop factor:  5.62 
Optical zoom:  
Digital zoom:  
ISO:  
RAW support:  
Manual focus:  
Normal focus range:  
Macro focus range:  
Focal length (35mm equiv.):  
Aperture priority:  
Max aperture:  
Max. aperture (35mm equiv.):  n/a 
Depth of field:  simulate → 
Metering:  
Exposure Compensation:  
Shutter priority:  
Min. shutter speed:  
Max. shutter speed:  
Builtin flash:  
External flash:  
Viewfinder:  Electronic 
White balance presets:  
Screen size:  
Screen resolution:  
Video capture:  
Storage types:  
USB:  
HDMI:  
Wireless:  
GPS:  
Battery:  
Weight:  
Dimensions:  
Year:  2012 
Compare JZ250 with another camera
Popular comparisons:
 Fujifilm FinePix JZ250 vs. Sony Cybershot DSCW630
 Fujifilm FinePix JZ250 vs. Fujifilm FinePix JX580
 Fujifilm FinePix JZ250 vs. Nikon Coolpix S2700
 Fujifilm FinePix JZ250 vs. Nikon Coolpix S3200
 Fujifilm FinePix JZ250 vs. Nikon Coolpix S3300
 Fujifilm FinePix JZ250 vs. Fujifilm FinePix JX520
 Fujifilm FinePix JZ250 vs. Panasonic Lumix DMCSZ7
 Fujifilm FinePix JZ250 vs. Fujifilm FinePix S2980
 Fujifilm FinePix JZ250 vs. Sony Cybershot DSCW50
 Fujifilm FinePix JZ250 vs. Fujifilm FinePix T200
 Fujifilm FinePix JZ250 vs. Canon PowerShot SX150 IS
Diagonal
The diagonal of JZ250 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value  0.3" (7.7 mm). If you want to know why, see
sensor sizes.
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal is calculated by the use of Pythagorean theorem:
Diagonal = √  w² + h² 
Fujifilm JZ250 diagonal:
w = 6.16 mm
h = 4.62 mm
h = 4.62 mm
Diagonal = √  6.16² + 4.62²  = 7.70 mm 
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =  sensor width in mm  × 1000 
sensor resolution width in pixels 
Fujifilm JZ250 pixel pitch:
Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch =  6.16  × 1000  = 1.34 µm 
4612 
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area =  sensor surface area in mm² 
effective megapixels 
Fujifilm JZ250 pixel area:
Pixel pitch = 1.34 µm
Pixel area = 1.34² = 1.8 µm²
Pixel area = 1.34² = 1.8 µm²
Pixel density
Pixel density can be calculated with the following formula:
You could also use this formula:
Pixel density = (  sensor resolution width in pixels  )² / 1000000 
sensor width in cm 
You could also use this formula:
Pixel density =  effective megapixels × 1000000  / 10000 
sensor surface area in mm² 
Fujifilm JZ250 pixel density:
Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → 

Resolution horizontal: X × r
Resolution vertical: X
Fujifilm FinePix JZ250 sensor resolution:
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33 

Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =  43.27 mm 
sensor diagonal in mm 
Fujifilm JZ250 crop factor:
Sensor diagonal = 7.70 mm
Crop factor =  43.27  = 5.62 
7.70 
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
Fujifilm FinePix JZ250 equivalent aperture:
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Fujifilm FinePix JZ250, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Fujifilm JZ250 is 5.62
Crop factor for Fujifilm JZ250 is 5.62
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.